Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Israeli universities to establish joint center that could further the science of organ repair

05.03.2012
A sophisticated national center for genetically engineering the sea anemone Nematostella will be opened as part of the Israeli Ministry of Science and Technology’s program to develop scientific and technological infrastructure in marine biology. The remarkable ability of this animal to regenerate its body parts could help further research into organ repair in humans.

The research will bring together Hebrew University of Jerusalem developmental biologist Dr. Uri Gat, Bar-Ilan University coral researcher Dr. Oren Levy, and Dr. Tamar Lotan, a researcher of sea anemones and jellyfish at the University of Haifa.


The Nematostella (Nematostella vectensis) is a sea anemone belonging to a large phylum of animals called Cnidarians that are among the most ancient animals on the evolutionary ladder. These animals, which include sea anemones, corals, jellyfish and hydra, have stinging cells on their tentacles through which they can devour larger creatures and pose a nuisance—and a danger—to bathers.

In order to study a particular animal, researchers must find an "animal model" that can easily be grown under laboratory conditions and studied in all stages of its life cycle. To do this scientists use small animals that grow and multiply quickly and whose genetic code is known, such as fruit flies and mice. Nematostella is the first animal among the cnidarians that can be used as an animal model.

According to Dr. Uri Gat of the Alexander Silberman Institute of Life Sciences at the Hebrew University, who is participating in establishing the new center and is the first to introduce the Nematostella animal model system into Israel, although the Nematostella is a very simple, ancient life form, it is rich in genes, many of which are in common with humans and which constitute earlier versions of parallel genes in humans.

"Nematostella allows us for the first time to find the ancestral genes to the important developmental pathways that are common to all animals, and thus to understand their role in the initial course of evolution, which may shed light on the function and importance of these genes in humans," explains Dr. Gat. "For example, the Cnidarians developed one of the first nervous systems in animals, so if we learn how it was created and how it functions we could have new tools for researching and understanding the nervous system in humans."

Unlike humans, Nematostella possess the rare ability to restore large parts of the body that have been damaged. According to Gat, research into the Nematostella will enable a deeper understanding of injury repair processes that are similar to processes in humans, thus contributing to the future development of new drugs that can speed wound healing in humans and the development of new innovations for rehabilitating damaged organs.

According to Dr. Tamar Lotan of the Leon H. Charney School of Marine Sciences at the University of Haifa, the center will investigate the active mechanism of the Nematostella’s stingers to discover ways to prevent injuries from the sea anemone’s relative, the jellyfish. In addition, the University of Haifa is examining the possibility of using Nematostella as a living sensor that can alert humans to seawater contamination.

The Nematostella Research Center will be funded by the Israeli Ministry of Science and Technology and will be located at Bar-Ilan University because of its central geographic location between the three institutions. This center will be the first of its kind in the world as it will be a first national inter-university center for Nematostella research.

Dr. Oren Levy, a partner in the center and director of the Laboratory for Molecular Marine Ecology at Bar-Ilan University, where his team studies biological clocks in corals, believes that cooperation between academics allows for bringing together different resources and sharing active research in the field. "In many parts of the world there are modern centers which offer the research scientist the state-of-the-art equipment, space and knowledge to enable scientific breakthroughs. We are proud to be involved in the creation of such a center here. Without a doubt, in this way we can advance science in Israel."

CONTACT:

Dov Smith, Hebrew University Foreign Press Liaison
02-5881641 / 054-8820860 (+972-54-8820860)
dovs@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Orit Sulitzeanu | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>