Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ionic liquid catalyst helps turn emissions into fuel

07.10.2011
An Illinois research team has succeeded in overcoming one major obstacle to a promising technology that simultaneously reduces atmospheric carbon dioxide and produces fuel.

University of Illinois chemical and biological engineering professor Paul Kenis and his research group joined forces with researchers at Dioxide Materials, a startup company, to produce a catalyst that improves artificial photosynthesis. The company, in the university Research Park, was founded by retired chemical engineering professor Richard Masel. The team reported their results in the journal Science.

Artificial photosynthesis is the process of converting carbon dioxide gas into useful carbon-based chemicals, most notably fuel or other compounds usually derived from petroleum, as an alternative to extracting them from biomass.

In plants, photosynthesis uses solar energy to convert carbon dioxide (CO2) and water to sugars and other hydrocarbons. Biofuels are refined from sugars extracted from crops such as corn. However, in artificial photosynthesis, an electrochemical cell uses energy from a solar collector or a wind turbine to convert CO2 to simple carbon fuels such as formic acid or methanol, which are further refined to make ethanol and other fuels.

“The key advantage is that there is no competition with the food supply,” said Masel, a co-principal investigator of the paper and CEO of Dioxide Materials, “and it is a lot cheaper to transmit electricity than it is to ship biomass to a refinery.”

However, one big hurdle has kept artificial photosynthesis from vaulting into the mainstream: The first step to making fuel, turning carbon dioxide into carbon monoxide, is too energy intensive. It requires so much electricity to drive this first reaction that more energy is used to produce the fuel than can be stored in the fuel.

The Illinois group used a novel approach involving an ionic liquid to catalyze the reaction, greatly reducing the energy required to drive the process. The ionic liquids stabilize the intermediates in the reaction so that less electricity is needed to complete the conversion.

The researchers used an electrochemical cell as a flow reactor, separating the gaseous CO2 input and oxygen output from the liquid electrolyte catalyst with gas-diffusion electrodes. The cell design allowed the researchers to fine-tune the composition of the electrolyte stream to improve reaction kinetics, including adding ionic liquids as a co-catalyst.

“It lowers the overpotential for CO2 reduction tremendously,” said Kenis, who is also a professor of mechanical science and engineering and affiliated with the Beckman Institute for Advanced Science and Technology. “Therefore, a much lower potential has to be applied. Applying a much lower potential corresponds to consuming less energy to drive the process.”

Next, the researchers hope to tackle the problem of throughput. To make their technology useful for commercial applications, they need to speed up the reaction and maximize conversion.

“More work is needed, but this research brings us a significant step closer to reducing our dependence on fossil fuels while simultaneously reducing CO2 emissions that are linked to unwanted climate change,” Kenis said.

Graduate students Brian Rosen, Michael Thorson, Wei Zhu and Devin Whipple and postdoctoral researcher Amin Salehi-Khojin were co-authors of the paper. The U.S. Department of Energy supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>