Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasion without a stir

21.12.2009
HZI researchers redefine the invasion mechanism of Salmonella

"Based on our data, the molecular mechanism of infection employed by Salmonella has to be revised," says Klemens Rottner, head of the HZI research group "Cytoskeleton Dynamics". The group's results have now been published in the current issue of the scientific journal "Cellular Microbiology".

Salmonella are highly adaptive bacteria. They can live in the presence and absence of oxygen and thus propagate in the gut. The ingestion by humans occurs mainly via contaminated egg dishes such as mayonnaise or raw milk products as well as meat or sausages. Infections with Salmonella lead to severe diarrhea and fever, particularly in patients harbouring a compromised immune system.

Although Salmonella are long-known pathogens, the precise mechanisms of infection are incompletely understood. The bacteria inject a protein cocktail using a "molecular syringe" into host cells, leading to dramatic rearrangements of cytoskeletal filaments below the cell membrane. As a result, membrane waves are formed, which enclose the bacteria, and apparently facilitate their invasion. Those characteristic membrane waves are called "ruffles", the process is known as "ruffling". Until now, researchers regarded the formation of these ruffles as absolutely essential for bacterial entry.

In a collaborative effort, HZI research groups "Cytoskeleton dynamics" and "Signalling and Motility" now succeeded in shedding new light on the infection strategy of Salmonella. "We wanted to improve our mechanistic understanding of how Salmonella invade their host cells," says Jan Hänisch, who performed most experiments in the course of his PhD-thesis. Cells that were engineered to lack those membrane ruffles normally induced during Salmonella infection still engulfed the bacteria. "We showed for the first time that membrane ruffles are not essential for the bacteria to penetrate the host cell membrane." Since ruffling was used so far as signature of successful host cell invasion by this pathogen, the usefulness of such methods has to be reconsidered.

Finally, the researchers discovered a new piece in the puzzle of Salmonella entry, called WASH. This novel factor promotes bacterial invasion by contributing to the formation of host cell cytoskeletal filaments important for entry. "Our results have significant impact on the molecular and mechanistic understanding of the infection strategy used by this pathogen," says Rottner, "and on the development of novel strategies to screen for potential inhibitors of the entry process in the future."

Original article: Molecular dissection of Salmonellen-induced membrane ruffling versus invasion. Hänisch J, Ehinger J, Ladwein M, Rohde M, Derivery E, Bosse T, Steffen A, Bumann D, Misselwitz B, Hardt WD, Gautreau A, Stradal TE, Rottner K. Cell Microbiol. (2010) 12(1), 84. doi:10.1111/j.1462-5822.2009.01380.x

Dr. Bastian Dornbach | EurekAlert!
Further information:
http://www.helmholtz-hzi.de

Further reports about: HZI Invasion Salmonella cell membrane cytoskeleton host cells

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>