Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team discovers gene associated with epilepsy

19.11.2008
A University of Iowa-led international research team has found a new gene associated with the brain disorder epilepsy. While the PRICKLE1 gene mutation was specific to a rare form of epilepsy, the study results could help lead to new ideas for overall epilepsy treatment.

The findings, which involved nearly two dozen institutions from six different countries, appear in the Nov. 7 issue of the American Journal of Human Genetics.

In epilepsy, nerve cells in the brain signal abnormally and cause repeated seizures that can include strange sensations, severe muscle spasms and loss of consciousness. The seizures may not have lasting effects but can affect activities, such as limiting a person's ability to drive. Most seizures do not cause brain damage but some types of epilepsy lead to physical disabilities and cognitive problems. Medications can control symptoms, but there is no cure.

"The study results were surprising not only because the PRICKLE1 gene had never been associated with epilepsy but also because the gene was not associated with any other human disease," said the study's lead author Alex Bassuk, M.D., Ph.D., assistant professor of pediatrics at the University of Iowa Carver College of Medicine and a pediatric neurologist with University of Iowa Children's Hospital.

The nine families involved in the study all lived in the Middle East and came from one of three family lines. Of the 47 individuals in the three family lines, 23 had a form of progressive myoclonus epilepsy accompanied by ataxia -- a condition that causes imbalance.

One family line has been extensively described by Hatem El-Shanti, M.D., a University of Iowa adjunct professor of pediatrics who now leads genetics research for the country of Qatar. The two other family lines had been researched by Sam Berkovic, M.D., at the University of Melbourne in Australia.

"By sharing and analyzing data sets, we realized there was a common mutation in the PRICKLE1 gene in the family members with this form of epilepsy," Bassuk said.

To verify that the mutation might be related to the epilepsy, the team needed to test it in an animal model. This next step to find a suitable animal model involved a surprising coincidence: Bassuk, who had only recently joined the UI, realized through online research that the PRICKLE1 gene in zebrafish had been previously identified by another University of Iowa researcher, Diane Slusarki, Ph.D., associate professor of biology in the UI College of Liberal Arts and Sciences.

"I walked across the river to Diane's side of campus, and we designed an experiment to test the human mutation in the zebrafish," Bassuk said. It was 'Iowa luck.'"

Slusarki and Bassuk's collaboration revealed that the mutated PRICKLE1 gene does not behave normally in zebrafish. Bassuk noted that collaboration, whether on-campus or international, was essential to the success of the research study.

"We never could have done, or could continue to do this type of research, with just one person thinking about it," he said. "From the clinicians who found and took histories on the study participants, to antibody testing at Stanford University to DNA shared from colleagues in Japan, the study required a lot of collaboration and coordination. And of course, we greatly appreciated the participation of the Mideastern families."

Bassuk, and colleagues are now developing other animal models to investigate how PRICKLE1 gene is involved in epilepsy, and are investigating whether PRICKLE1 mutations are involved in the general population of patients with epilepsy. With that information, there is potential to develop new drugs for people with different forms of epilepsy in the general population, as well as for the study participants with the disease.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Numbers count in the genetics of moles and melanomas
16.08.2019 | University of Queensland

nachricht Working out why plants get sick
16.08.2019 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>