Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insomniac Flies Resemble Sleep-deprived Humans

04.06.2009
Researchers at Washington University School of Medicine in St. Louis have created a line of fruit flies that may someday help shed light on the mechanisms that cause insomnia in humans. The flies, which only get a small fraction of the sleep of normal flies, resemble insomniac humans in several ways.

"Insomnia is a common and debilitating disorder that results in substantial impairments in a person’s quality of life, reduces productivity and increases the risk for psychiatric illness," says senior author Paul Shaw, Ph.D. "We think this model has clear potential to help us learn more about the causes of insomnia and someday develop ways to test for or treat them in the clinic."

The findings are published June 3 in The Journal of Neuroscience.

One of Shaw's co-authors, Stephen Duntley, M.D., directs the Washington University Sleep Medicine Center.

"Insomnia is frustrating for clinicians for several reasons, including its high prevalence, uncertainties about how to define and categorize it, and how little we know about the pathophysiological mechanisms that can contribute to it," Duntley says. "The wonderful thing about this new model is that it lets us begin to sort out some of the many potential mechanisms, genetic and otherwise, that may underlie insomnia, hopefully leading to new interventions."

Shaw's lab was the first to show that fruit flies enter a state of inactivity comparable to sleep. The researchers demonstrated that the flies have periods of inactivity where greater stimulation is required to rouse them. Like humans, flies deprived of sleep one day will try to make up for it by sleeping more the next day, a phenomenon referred to as increased sleep drive or sleep debt.

As he studied the healthy flies, Shaw noticed that a few flies naturally slept less than others. He decided to take flies with insomnia-like characteristics and breed them to amplify those qualities. The flies he bred had difficulty falling asleep in normal circumstances, and their sleep was often interrupted or fragmented. He also used hyper-responsiveness to stimuli as a breeding guide. For example, if researchers turned on a light at night, insomniac flies woke and stayed up the rest of the night, while the healthy flies went back to sleep. The flies that stayed up were added to the breeding pool.

After generations of selective breeding, Shaw's group had produced a line of flies that naturally spent only an hour a day asleep—less than 10 percent of the 12 hours of sleep normal flies get. They quickly noticed an obvious and surprising behavioral change: even though flies have six legs, the insomniac flies fell over more often.

"We sent them to experts in neurodegeneration in flies to see if their lack of sleep or the breeding had somehow damaged their brains," Shaw says. "But the experts said there weren't any physical brain abnormalities."

Shaw briefly entertained the possibility that the flies might be sleepwalking but realized that declines in balance have also been reported in sleep-deprived humans. In addition, other indicators suggested the flies weren't getting enough sleep. His lab previously isolated a biomarker for sleepiness that is present in flies and human saliva, and the insomniac flies had high levels of it. The flies also were slower learners and gained more fat, two indicators for fly sleep deprivation that Shaw identified earlier. Similar symptoms also occur in sleep-deprived humans.

Lead author Laurent Seugnet, Ph.D., says that while the insomniac flies "clearly suffer consequences" from their lack of sleep, they also show some resistance to the adverse effects of sleep deprivation. For example, while 70 hours of sleep deprivation will kill a normal fly, the insomniac flies can spontaneously go up to 240 hours without sleep and still survive.

"Overall, the flies are able to perform better than they should, given how much sleep they miss," says Seugnet. "That makes it tempting to speculate that insomnia is like drug addiction. As it increases the body's overall vulnerability and risk of collapse, it also seems to boost certain factors that help resist collapse."

When researchers screened the genome of the insomniac flies for changes in gene activity levels, they found altered activity levels for genes involved in metabolism, nerve cell activity and sensory perception. Shaw's lab had previously demonstrated that the activity levels of at least two of these genes are changed in sleep-deprived humans.

Researchers speculate that some genes altered by insomnia and sleep deprivation may simultaneously contribute to both detrimental and temporarily advantageous effects. Shaw has conducted follow-up studies of the altered genes and how restoring normal genetic activity levels affects insomnia and its symptoms. He will publish the results in a forthcoming paper.

###

Seugnet L, Suzuki Y, Thimgan M, Donlea J, Gimbel SI, Gottschalk L, Duntley SP, Shaw PJ. Identifying sleep regulatory genes using a Drosophila model of insomnia. The Journal of Neuroscience, June 3, 2009.

Funding from the National Institutes of Health and the McDonnell Center for Cellular and Molecular Neurobiology supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>