Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects have personalities too, research on honey bees indicates

09.03.2012
A new study in Science suggests that thrill-seeking is not limited to humans and other vertebrates. Some honey bees, too, are more likely than others to seek adventure. The brains of these novelty-seeking bees exhibit distinct patterns of gene activity in molecular pathways known to be associated with thrill-seeking in humans, researchers report.

The findings offer a new window on the inner life of the honey bee hive, which once was viewed as a highly regimented colony of seemingly interchangeable workers taking on a few specific roles (nurse or forager, for example) to serve their queen.

Now it appears that individual honey bees actually differ in their desire or willingness to perform particular tasks, said University of Illinois entomology professor and Institute for Genomic Biology director Gene Robinson, who led the study. These differences may be due, in part, to variability in the bees’ personalities, he said.

“In humans, differences in novelty-seeking are a component of personality,” he said. “Could insects also have personalities?”

Robinson and his colleagues studied two behaviors that looked like novelty-seeking in honey bees: scouting for nest sites and scouting for food.
When a colony of bees outgrows its living quarters, the hive divides and the swarm must find a suitable new home. At this moment of crisis, a few intrepid bees – less than 5 percent of the swarm – take off to hunt for a hive.

These bees, called nest scouts, are on average 3.4 times more likely than their peers to also become food scouts, the researchers found.

“There is a gold standard for personality research and that is if you show the same tendency in different contexts, then that can be called a personality trait,” Robinson said, who also is affiliated with the Neuroscience Program at Illinois. Not only do certain bees exhibit signs of novelty-seeking, he said, but their willingness or eagerness to “go the extra mile” can be vital to the life of the hive.

The researchers wanted to determine the molecular basis for these differences in honey bee behavior. They used whole-genome microarray analysis to look for differences in the activity of thousands of genes in the brains of scouts and non-scouts.

“People are trying to understand what is the basis of novelty-seeking behavior in humans and in animals,” Robinson said. “And a lot of the thinking has to do with the relationship between how the (brain’s) reward system is engaged in response to some experience.”

The researchers found thousands of distinct differences in gene activity in the brains of scouting and non-scouting bees.

“We expected to find some, but the magnitude of the differences was surprising given that both scouts and non-scouts are foragers,” Robinson said.

Among the many differentially expressed genes were several related to catecholamine, glutamate and gamma-aminobutyric acid (GABA) signaling, and the researchers zeroed in on these because they are involved in regulating novelty-seeking and responding to reward in vertebrates.

To test whether the changes in brain signaling caused the novelty-seeking, the researchers subjected groups of bees to treatments that would increase or inhibit these chemicals in the brain. Two treatments (with glutamate and octopamine) increased scouting in bees that had not scouted before. Blocking dopamine signaling decreased scouting behavior, the researchers found.

“Our results say that novelty-seeking in humans and other vertebrates has parallels in an insect,” Robinson said. “One can see the same sort of consistent behavioral differences and molecular underpinnings.”

The findings also suggest that insects, humans and other animals made use of the same genetic “toolkit” in the evolution of behavior, Robinson said. The tools in the toolkit – genes encoding certain molecular pathways – may play a role in the same types of behaviors, but each species has adapted them in its own, distinctive way.

“It looks like the same molecular pathways have been engaged repeatedly in evolution to give rise to individual differences in novelty-seeking,” he said.
The National Science Foundation, National Institutes of Health and Illinois Sociogenomics Initiative supported this research.

Collaborators on this study included researchers from Wellesley College and Cornell University.

Editor’s notes: To reach Gene Robinson, call 217-202-9130;
email generobi@illinois.edu.
The paper, “Molecular Determinants of Scouting Behavior in Honeybees,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>