Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Individual “Names” Reveal Complex Relationships in Male Bottlenose Dolphins

08.06.2018

Male bottlenose dolphins retain their individual “names” well into adulthood. Similar to humans, this plays a central role in forming and maintaining complex social relationships, recent findings carried out by researchers at the universities of Zurich and Western Australia suggest. Dolphins form long-lasting alliances in which they give each other mutual support.

Dolphins are intelligent creatures that communicate with high-frequency whistles and are capable of forming strong relationships. Within their population, male dolphins enter into complex, multi-level alliances ranging from intense, lifelong friendships to loose groups. For example, during the mating season two or three males will join forces to separate a female from the group, mate with her, and fend off rivals, or even “steal” females from other groups.


Male dolphins, despite their strong social bonds, retain their individual whistles to identify their partners and competitors.

Image: Simon Allen, Dolphin Innovation Project


Within their population, male dolphins enter into complex, multi-level alliances.

Image: Simon Allen, Dolphin Innovation Project

Recordings of individual voice labels

Scientists at UZH, the University of Western Australia and the University of Massachusetts studied 17 adult bottlenose dolphins in Shark Bay in Western Australia. The existence of complex, multi-level alliances among males was already known from previous research on this population.

Their mutual bonds are as strong as those between mothers and their calves. Earlier research had also shown that dolphins use high-frequency whistles as a kind of “name” to introduce themselves and also to be able to identify each other, even over long distances under water

For the present study, the researchers used underwater microphones to make recordings of the dolphins’ whistles, and were able to identify each male’s individual voice label. They measured the similarity of these identifying signals, both within their immediate alliance and within another network in their community. They discovered that male dolphins, despite their strong social bonds, retain their individual whistles to identify their partners and competitors, and that these do not become adapted to each other over time.

Every male dolphin retains his own call for life

“This is a very unusual finding,” says Michael Krützen, professor of anthropology and evolutionary biology at the University of Zurich. It is common for pairs or groups of animals to converge on a similar call to build and maintain their strong bonds. It occurs, for example, among certain species of parrot, bats, elephants and primates. “With male bottlenose dolphins, precisely the opposite happens: Each male keeps his own, individual call, and distinguishes himself from his allies, even when they develop an incredibly strong bond,” explains Krützen.

The fact that the individual “names” are kept helps males to keep track of their many different relationships and distinguish between friends, friends of friends, and rivals. This way they’re able to negotiate a complex social network of cooperative relationships. “Besides humans, so far only dolphins appear to retain their individual ‘names’ when it comes to forming close, long-lasting, cooperative relationships,” states Stephanie King, lead author of the study.

Physical contact to cement relationships

Male dolphins also use physical signals such as caresses, slaps and synchronized behavior to express their social bonds. “At the moment we’re looking more closely into the relationships among the males in an alliance to find out whether or not they’re equally strong between all the individuals involved,” explains Krützen.

Literature:
Stephanie L. King, Whitney R. Friedman, Simon J. Allen, Livia Gerber, Frants H. Jensen, Samuel Wittwer, Richard C. Connor, and Michael Krützen. Bottlenose Dolphins Retain Individual Vocal Labels in Multi-Level Alliances. Current Biology, June 7, 2018. DOI: 10.1016/j.cub.2018.05.013

Contact:
Prof. Michael Krützen, PhD
Department of Anthropology
University of Zurich
Phone: +41 44 635 54 12
E-mail: michael.kruetzen@aim.uzh.ch

Dr. Stephanie King
School of Biological Sciences
University of Western Australia
Crawley, WA, Australia
E-mail: stephanie.king@uwa.edu.au

Rita Ziegler | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>