Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the right place at the right time

13.02.2020

Proteins are molecular work horses in the cell that perform specific tasks, but it is essential that the timing of protein activities is exquisitely controlled. When proteins have fulfilled their tasks, degradation of these proteins will end processes that are unneeded or detrimental. To control timing, a label – called “ubiquitin” - is attached to unwanted proteins, marking the protein for degradation. Although complex molecular machineries were known to attach ubiquitin, how these machines carry out the labeling process was unknown. Researchers at MPIB, in collaboration with the University of Nevada Las Vegas, have revealed these mechanisms and published the results in the journal Nature.

Numerous cellular processes such as immune responses or cell multiplication depend on many different proteins working in sequence. In order for the cell to function correctly, proteins must be degraded after their work is done.


NEDD8 configures the shape of the cullin-RING ligase, UBE2D and ubiquitin so the ubiquitin can be attached to the target substrate.

Kheewoong Baek © MPI of Biochemistry

When disease-causing mutations block timely protein degradation, proteins could function at the wrong time, which can lead to diseases, including cancers, heart diseases and developmental disorders.

Controlling protein degradation

Cells “know” to break down proteins by marking unwanted proteins for degradation with another protein called "ubiquitin". The labelling process, known as ubiquitylation, is carried out by molecular machines, called E3 ligases.

It is important that the E3 ligases themselves are switched on and off in the cells at the right place and at the right time. The "switch on" for about one third of all E3 ligases is a small protein that looks like ubiquitin but is called NEDD8.

NEDD8 at the control of turning off other proteins

Although the individual components of these protein degradation machineries were known, it was unclear how NEDD8 switches on the E3 ligases and enables tagging the target protein with ubiquitin.

“This is especially important because there are drugs in anti-cancer clinical trials that block NEDD8, and some infectious bacteria manipulate NEDD8 to disturb cellular processes”, said Brenda Schulman, head of the "Molecular Machines and Signaling" department at MPIB. Schulman and her team have now deciphered the molecular mechanisms of this ubiquitylation.

"We investigated the mode of action of an E3 turned on by NEDD8. We discovered how NEDD8 induces an E3 molecular machine to bring the ubiquitin tag to its targets. This is a key to switching proteins off at the right time, when no longer needed in a cell," said Schulman.

Using chemistry and cryo-electron microscopy, the scientists have succeeded in visualizing an important E3 ligase, turned on by NEDD8 and in the process of ubiquitin tagging a target.

"To do this, we took a close look at each step in the tagging process. The natural process occurs within a fraction of a second, after which the molecular tagging machine falls apart. The process of capturing this normally short-lived state was particularly difficult" explains Kheewoong Baek, lead author of the study.

E3 ligase molecular machines control many cellular processes. “The deciphered mechanism not only explains the normal process and what goes wrong in some cancers where mutations prevent the E3 machine from working, but can also serve as a guide for developing therapies to tag unwanted proteins with ubiquitin.

We hope that in the long-term this could help degrade proteins that cause cancer,” summarizes Schulman. [FA]

Wissenschaftliche Ansprechpartner:

Prof. Brenda Schulman, PhD
Department Molecular Machines and Signaling
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany

E-Mail: schulman@biochem.mpg.de

Originalpublikation:

K. Baek, DT Krist, JR Prabu, S. Hill, M. Klügel, LM Neumaier, S. Gronau, G. Kleiger, BA Schulman: NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly
Nature, February 2020
DOI: https://doi.org/10.1038/s41586-020-2000-y

Weitere Informationen:

http://www.biochem.mpg.de/schulman

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dragonflies move to the city
14.02.2020 | Technische Universität Braunschweig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>