Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In cordon bleus, song develops independently of sex differences in the brain

04.11.2015

In female songbirds, brain areas responsible for song learning are usually smaller and have fewer neurons compared to males. However, in many species such as the blue-capped cordon bleu, females possess an elaborate song.

Scientists from the Max Planck Institute for Ornithology in Seewiesen now found in this species pronounced sex differences in the brain already in juvenile birds, where females had up to 50% less neurons in the song control areas. However, this had no effect on the song learning process. Only when adult, females had developed a different song with shorter and simpler strophes than males.


Blue-capped cordon-bleus (Uraeginthus cyanocephalus) inspecting a Jackson golden-backed weaver nest (Ploceus jacksoni).

Wolfgang Goymann

In all songbirds investigated to date there are sex differences in those parts of the brain that are responsible for the learning and the production of song. These brain areas are smaller in females and they possess fewer neurons.

This fact is often used as an explanation why females have simpler songs than males or do not sing at all. The neuroanatomical sex differences emerge during development and have a genetic basis or are due to the action of steroid hormones. For example, female song can be induced by the male sex hormone testosterone.

Nevertheless, there are species, in particular in the tropics, where males and females sing nearly similar songs. It is assumed that the song is important for pair bonding and year-round defense of a territory and food resources. Scientists headed by Manfred Gahr from the Max Planck Institute for Ornithology in Seewiesen have for the first time investigated the development of song and the underlying neuroanatomical changes in a species with female song.

Male and female blue-capped cordon bleus that originate from East Africa, start their first vocalizations around the age of 30-40 days. The scientists analyzed different song traits during development in regular intervals and found sex differences only after the birds reached adulthood and were older than 250 days. At that time females suddenly started to sing shorter and simpler songs as their male peers of the same age.

In parallel the scientists investigated the birds’ neuroanatomical properties. Most remarkably, volume and neuron number of the song control regions HVC and RA were smaller in females compared to males from the first point of investigation at day 20 and persisted throughout the entire developmental period.

“These anatomical sex differences are present already in a very early developmental stage and precede the sex differences in song behaviour”, says Manfred Gahr. However, this is not the only amazing result. Despite these different anatomical prerequisites there is a parallel brain development in both sexes. Although the song control centers are up to 55% smaller and have 30-50% fewer neurons, females develop a song comparable to that of males. At least for song learning, these sex differences do not seam to have a functional role.

SSp/HR-MG

Weitere Informationen:

http://www.orn.mpg.de/3639057/news_publication_9725569?c=2732
http://journal.frontiersin.org/article/10.3389/fevo.2015.00117/abstract

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie

More articles from Life Sciences:

nachricht Living Components
22.07.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Regulation of root growth from afar: How genes from leaf cells affect root growth
22.07.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Bridging the nanoscale gap: A deep look inside atomic switches

22.07.2019 | Physics and Astronomy

Regulation of root growth from afar: How genes from leaf cells affect root growth

22.07.2019 | Life Sciences

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>