Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impulse for Research on Fungi

08.04.2020

For the first time, the cells of fungi can also be analysed using a relatively simple microscopic method. Researchers from Würzburg and Cordoba present the innovation in the journal "Frontiers in Microbiology".

Fungi play an important role for mankind. In the soil, they decompose dead organic material, making it accessible to plants as a nutrient. In industrial biotechnological plants, fungi produce vast quantities of chemicals and food every day. In addition, fungi produce very complex active ingredients that could have potential for medical applications.


In expansion microscopy, the preparation is magnified more than four times. Here, a germ tube of Aspergillus fumigatus is shown before and after expansion; the scale corresponds to ten micrometers.

Picture: Ulrich Terpitz / University of Würzburg

On the other hand, there are fungi that damage crops or make people sick. For example, infections caused by the fungus Aspergillus fumigatus can be fatal – especially people with a severely weakened immune system, for example after stem cell or organ transplantation, are affected.

Despite this great importance, far less is known about fungi than about other organisms. "New findings in fungal biology also require that as many researchers as possible have access to state-of-the-art analytical methods," says Dr. Ulrich Terpitz from the Biocenter at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany.

Successful with expansion microscopy

Terpitz's team has developed such a method in collaboration with three other research groups: For the first time, fungi can now be visualised using expansion microscopy (ExM). This method makes cellular structures visible with a resolution of less than 60 nanometres – using a conventional confocal fluorescence microscope.

"Although this is less than can be achieved with high-tech super-resolution fluorescence microscopes, access to such facilities is often limited, especially for fungal researchers. In contrast, standard fluorescence microscopes are widely used and expansion microscopy can be carried out in any biological laboratory," said Terpitz.

The JMU working groups of Professor Markus Sauer (Biocenter) and Dr. Johannes Wagener (Institute of Hygiene and Microbiology) and the group "Molecular Genetics of Fungal Pathogenicity" headed by Professor Antonio Di Pietro from the University of Cordoba in Spain contributed to the development.

Method used for three fungal species

The ExM procedure is quite simple: the stained fungus sample is embedded in a polyacrylamide hydrogel and the fluorescent dyes are anchored in the hydrogel. After water is added, the polymer expands like a gummy bear in a glass of water. It also expands the fluorescent dyes in a uniform manner.

However, there is a problem to be solved first: Fungi have a cell wall that must be removed before expansion. The researchers use cell wall dissolving enzymes for this purpose. "The result is an easy-to-handle protocol for the ExM of fungi that can be used for different fungus species, including the clinically relevant Aspergillus fumigatus," said Terpitz. The researchers also applied their method to the pathogens of corn blight (Ustilago) and tomato wilt (Fusarium oxysporum).

Funding by the German Research Foundation

These results were developed within the framework of the transregional collaborative research centre 124 FungiNet (Jena/Würzburg), which is funded by the German Research Foundation (DFG). Next, the JMU researchers want to use expansion microscopy to show the immune system's reaction to invading fungi. For this purpose, they will bring fungi in cell cultures into contact with immune cells.

Wissenschaftliche Ansprechpartner:

PD Dr. Ulrich Terpitz, Chair of Biotechnology and Biophysics, University of Würzburg, ulrich.terpitz@uni-wuerzburg.de

Originalpublikation:

Götz, R., Panzer, S., Trinks, N., Eilts, J., Wagener, J., Turra, D., Di Pietro, A., Sauer, M., and Terpitz, U.; Expansion microscopy for cell biology analysis in fungi. Frontiers in Microbiology, 3rd April 2020, doi: 10,3389/fmicb.2020.00574

Weitere Informationen:

https://www.biozentrum.uni-wuerzburg.de/super-resolution/publications/ulrich-ter... Website Dr. Ulrich Terpitz
https://www.funginet.de/ Website SFB Transregio 124 FungiNet

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>