Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important Human Genetic Structures Identified for the First Time

10.10.2011
Genetic information transferred within cells plays an essential role both in the healthy function of the human body and in changes within cells that can trigger serious disease.

New research led by Dmitry Temiakov, Ph.D., of UMDNJ-School of Osteopathic Medicine, has identified important mechanisms of this genetic transfer process for the first time. These new findings, published in the journal Nature, open the door to developing potential therapies for several serious diseases including cancers. They also add to basic knowledge of the functioning of the healthy human body.

Each human cell harbors small organelles called mitochondria, which are responsible for the energy production of the cell, and therefore are often called the cell’s "power plant." Mitochondria contain their own genome which is maternally inherited and encodes numerous genes of proteins that are involved in energy production. Mitochondria are also believed to fuel harmful processes that can lead to the development of conditions that include diabetes, cancer and Parkinson’s disease, as well as the onset of cognitive impairment and other conditions associated with aging.

Because of this, therapy that targets the actions of mitochondria may be a promising strategy for mitigating and even reversing these illnesses, making understanding of molecular mechanisms of mitochondrial gene expression an important goal for researchers.

The current research sought to uncover structural information about mitochondrial (human) RNA polymerase, the key enzyme in the process of transferring genetic information from mitochondrial DNA to RNA, the molecule that carries that information to structures within cells that govern those cells’ function in the body. Mitochondrial RNA polymerase does not directly share its sequence or structural homology (common evolutionary origin) with large multi-subunit cellular RNA polymerases, the variety that appears in organisms such as bacteria and also in the nuclei of human cells. The lack of commonality between two distinct varieties of polymerase that coexist within human cells has intrigued the scientific community. Thus, the structure of multi-subunit RNA polymerase II has been a subject of intensive studies, including by Nobel Laureate Roger Kornberg. In 1984 David Clayton and colleagues demonstrated that mitochondrial RNA polymerase is related to a polymerase found in a small virus of E.coli bacterium, called phage T7. This was a surprising finding since it is believed that mitochondria originated from an endosymbiotic relationship (where one organism hosts the other) formed between bacteria and eukaryotes (cells that are the building blocks of organisms that include humans) and thus that the majority of mitochondrial proteins have bacterial homologies. Until now, specific structures and pathways involved could not be identified.

The team led by Temiakov sought to make such an identification by teaming up with the lab of one of the world's leading crystallographers, Prof. Patrick Cramer in Gene Center, Munich, Germany (http://www.lmb.uni-muenchen.de/cramer/patrickCramer/index.htm). The project was initiated about four years ago but only last year the team was able to obtain large, well-diffracting crystals of an active form of human mitochondrial polymerase. The structure was solved in Cramer's lab and reveals the mechanistic adaptations that occurred during evolution of a self-sufficient T7-like RNA polymerase to become regulated by transcription initiation factors. It is the first-ever representation of mitochondrial polymerase.

Temiakov says he and his colleagues were thrilled to make their discovery. “I would compare our own excitement about this structure with what anthropologists experience when they find an ancient hominid and can see changes in the skull and other bones that occurred during an evolution and resulted in modern human beings.”

The structural information can be used to understand how mitochondrial polymerase binds DNA, interacts with other mitochondrial proteins and regulates expression of mitochondrial genes under different conditions. This knowledge will guide many future biochemical and genetic experiments and will help to validate mitochondrial polymerase as a therapeutic target.

Journalists who wish to interview Dmitry Temiakov, Ph.D., are invited to contact Rob Forman, UMDNJ Chief of News Services, at 973-972-7276 or formanra@umdnj.edu .

The University of Medicine and Dentistry of New Jersey (UMDNJ) is the nation's largest free-standing public health sciences university with more than 6,000 students on five campuses attending the state's three medical schools, its only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and New Jersey’s only school of public health. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, which provides a continuum of healthcare services with multiple locations throughout the state.

Rob Forman | Newswise Science News
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>