Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important Human Genetic Structures Identified for the First Time

10.10.2011
Genetic information transferred within cells plays an essential role both in the healthy function of the human body and in changes within cells that can trigger serious disease.

New research led by Dmitry Temiakov, Ph.D., of UMDNJ-School of Osteopathic Medicine, has identified important mechanisms of this genetic transfer process for the first time. These new findings, published in the journal Nature, open the door to developing potential therapies for several serious diseases including cancers. They also add to basic knowledge of the functioning of the healthy human body.

Each human cell harbors small organelles called mitochondria, which are responsible for the energy production of the cell, and therefore are often called the cell’s "power plant." Mitochondria contain their own genome which is maternally inherited and encodes numerous genes of proteins that are involved in energy production. Mitochondria are also believed to fuel harmful processes that can lead to the development of conditions that include diabetes, cancer and Parkinson’s disease, as well as the onset of cognitive impairment and other conditions associated with aging.

Because of this, therapy that targets the actions of mitochondria may be a promising strategy for mitigating and even reversing these illnesses, making understanding of molecular mechanisms of mitochondrial gene expression an important goal for researchers.

The current research sought to uncover structural information about mitochondrial (human) RNA polymerase, the key enzyme in the process of transferring genetic information from mitochondrial DNA to RNA, the molecule that carries that information to structures within cells that govern those cells’ function in the body. Mitochondrial RNA polymerase does not directly share its sequence or structural homology (common evolutionary origin) with large multi-subunit cellular RNA polymerases, the variety that appears in organisms such as bacteria and also in the nuclei of human cells. The lack of commonality between two distinct varieties of polymerase that coexist within human cells has intrigued the scientific community. Thus, the structure of multi-subunit RNA polymerase II has been a subject of intensive studies, including by Nobel Laureate Roger Kornberg. In 1984 David Clayton and colleagues demonstrated that mitochondrial RNA polymerase is related to a polymerase found in a small virus of E.coli bacterium, called phage T7. This was a surprising finding since it is believed that mitochondria originated from an endosymbiotic relationship (where one organism hosts the other) formed between bacteria and eukaryotes (cells that are the building blocks of organisms that include humans) and thus that the majority of mitochondrial proteins have bacterial homologies. Until now, specific structures and pathways involved could not be identified.

The team led by Temiakov sought to make such an identification by teaming up with the lab of one of the world's leading crystallographers, Prof. Patrick Cramer in Gene Center, Munich, Germany (http://www.lmb.uni-muenchen.de/cramer/patrickCramer/index.htm). The project was initiated about four years ago but only last year the team was able to obtain large, well-diffracting crystals of an active form of human mitochondrial polymerase. The structure was solved in Cramer's lab and reveals the mechanistic adaptations that occurred during evolution of a self-sufficient T7-like RNA polymerase to become regulated by transcription initiation factors. It is the first-ever representation of mitochondrial polymerase.

Temiakov says he and his colleagues were thrilled to make their discovery. “I would compare our own excitement about this structure with what anthropologists experience when they find an ancient hominid and can see changes in the skull and other bones that occurred during an evolution and resulted in modern human beings.”

The structural information can be used to understand how mitochondrial polymerase binds DNA, interacts with other mitochondrial proteins and regulates expression of mitochondrial genes under different conditions. This knowledge will guide many future biochemical and genetic experiments and will help to validate mitochondrial polymerase as a therapeutic target.

Journalists who wish to interview Dmitry Temiakov, Ph.D., are invited to contact Rob Forman, UMDNJ Chief of News Services, at 973-972-7276 or formanra@umdnj.edu .

The University of Medicine and Dentistry of New Jersey (UMDNJ) is the nation's largest free-standing public health sciences university with more than 6,000 students on five campuses attending the state's three medical schools, its only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and New Jersey’s only school of public health. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, which provides a continuum of healthcare services with multiple locations throughout the state.

Rob Forman | Newswise Science News
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht Pollinator friendliness can extend beyond early spring
22.11.2019 | American Society for Horticultural Science

nachricht Wound healing in mucous tissues could ward off AIDS
22.11.2019 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>