Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells help fat deal with environmental challenges

08.09.2017

Immunosuppressive regulatory T-cells play an important role in the functioning of adipose tissue. This is the discovery of scientists from the Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München and the Technical University of Munich (TUM). Their findings are published in the journal ‘Cell Metabolism’.

The number of obese people as well as those suffering from type 2 diabetes is increasing worldwide. Both disorders are associated with metabolic changes including amplified inflammatory responses in adipose tissue.


T cells after a short-term cold treatment (left) and under control conditions (right). Immunofluorescent staining of the T cell marker CD3 (green), the Treg marker Foxp3 (red) and the nucleus (blue).

Source: Helmholtz Zentrum München

“Previous studies have indicated that immunosuppressive regulatory T-cells – or Tregs for short – play an important role in these processes”, explains the leader of the study Dr. Carolin Daniel, group leader at the Institute for Diabetes Research (IDF) of the Helmholtz Zentrum München and a scientist in the German Center for Diabetes Research (DZD).* “We now wanted to examine how these immune cells might support adipose function in more detail.”

In an experimental model, Daniel, together with co-first authors Dr. Stefanie Kälin and Maike Becker and colleagues, determined that the number of Tregs in adipose tissue increases in response to different environmental stimuli. These stimuli included a short-term cold treatment, stimulation of the sympathetic nervous system (β3-adrenoreceptors) or short-term high-caloric exposure. “All these stimuli supported those immunosuppressive cells directly in the adipose tissue”, says Becker.

Fat burning activated

The magnitude of the increase in Tregs differed depending on the type of adipose tissue: it was particularly pronounced in brown fat**, somewhat weaker in subcutaneous fat and weakest in visceral fat. To investigate the specific function of Tregs, the researchers determined how gene expression changes in adipose tissue. Especially in brown fat, genes were activated that promote heat production (thermogenesis) as well as those that are used for the breakdown (lipolysis) and burning (oxidation) of fatty acids. Subsequent experiments revealed that the signalling molecules Stat6 und Pten play a vital role in this process.

“A better understanding of the immunological mechanisms involved in the target tissue will be critical for the development of personalized interventions in order to improve adipose tissue function during obesity and diabetes”, says the leader of the study Carolin Daniel. “Our experiments show for the first time that Tregs can support fat depots in dealing with environmental challenges.”

“Our findings highlight the complex interactions between our body and the environment. We have known for a while that hormones play a key role here – but now have to accept that immune cells may be just as important for a balanced metabolism”, comments Prof. Dr. Matthias Tschöp. He is the scientific director of the HDC at Helmholtz Zentrum München and holds the chair for metabolic diseases at the TUM. “These insights therefore help us tremendously with designing more efficient ways to therapeutically optimize when and how to store calories.”

Prof. Dr. Matthias Mann from the Max Planck Institute of Biochemistry in Martinsried as well as the group of PD Dr. Benno Weigmann from Universitätsklinikum Erlangen also made significant contributions to the study.

Further Information

* Regulatory T-cells suppress unwanted immune reactions and thereby prevent autoimmune diseases, for instance. The transcription factor Foxp3, which was determined by the scientists, is characteristic for this cell type.

** Brown adipose tissue is found in almost all mammals, including humans. Its cells produce heat by oxidizing sugars and fatty acids. This makes them an interesting target for pharmacological treatment of obesity.

Background:
The doctoral students Maike Becker, Victoria Flynn, Verena Ott, Isabelle Serr, Markus Hippich and Martin Scherm are participants in the Helmholtz Graduate School for Environmental Health (HELENA). https://www.helmholtz-helena.de/

Original Publication:
Kälin, S. & Becker, M. et al. (2017): A Stat6/Pten axis links regulatory T cells with adipose tissue function. Cell Metabolism, DOI: 10.1016/j.cmet.2017.08.008

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 500 professors, around 10,000 academic and non-academic staff, and 40,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, com-bined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. http://www.tum.de/en/homepage

The Institute of Diabetes Research (IDF) focuses on the pathogenesis and prevention of type 1 diabetes and type 2 diabetes and the long-term effects of gestational diabetes. A major project is the development of an insulin vaccination against type 1 diabetes. The IDF conducts long-term studies to examine the link between genes, environmental factors and the immune system for the pathogenesis of type 1 diabetes. Findings of the BABYDIAB study, which was established in 1989 as the world’s first prospective birth cohort study, identified risk genes and antibody profiles. These permit predictions to be made about the pathogenesis and onset of type 1 diabetes and will lead to changes in the classification and the time of diagnosis. The IDF is part of the Helmholtz Diabetes Center (HDC). http://www.helmholtz-muenchen.de/en/idf/index.html

The German Center for Diabetes Research (DZD) is a national association that brings together experts in the field of diabetes research and combines basic research, translational research, epidemiology and clinical applications. The aim is to develop novel strategies for personalized prevention and treatment of diabetes. Members are Helmholtz Zentrum München – German Research Center for Environmental Health, the German Diabetes Center in Düsseldorf, the German Institute of Human Nutrition in Potsdam-Rehbrücke, the Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Medical Center Carl Gustav Carus of the TU Dresden and the Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard-Karls-University of Tuebingen together with associated partners at the Universities in Heidelberg, Cologne, Leipzig, Lübeck and Munich. http://www.dzd-ev.de/en/index.html

Contact for the Media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany – Tel. +49 (0)89 3187 2238 - Fax: +49 (0)89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Carolin Daniel, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Institute for Diabetes Research, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany – Tel. +49 89 3187 2188 - E-mail: carolin.daniel@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Diabetes Helmholtz TUM adipose tissue diseases immune type 1 diabetes

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>