Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging electric charge propagating along microbial nanowires

20.10.2014

The claim by UMass Amherst researchers that the microbe Geobacter produces tiny electrical wires has been mired in controversy for a decade, but a new collaborative study provides stronger evidence than ever to support their claims.

The claim by microbiologist Derek Lovley and colleagues at the University of Massachusetts Amherst that the microbe Geobacter produces tiny electrical wires, called microbial nanowires, has been mired in controversy for a decade, but the researchers say a new collaborative study provides stronger evidence than ever to support their claims.


UMass Amherst researchers recently provided stronger evidence than ever before to support their claim that the microbe Geobacter produces tiny electrical wires, called microbial nanowires, along which electric charges propagate just as they do in carbon nanotubes, a highly conductive man-made material.

Credit: UMass Amherst

UMass Amherst physicists working with Lovley and colleagues report in the current issue of Nature Nanotechnology that they've used a new imaging technique, electrostatic force microscopy (EFM), to resolve the biological debate with evidence from physics, showing that electric charges do indeed propagate along microbial nanowires just as they do in carbon nanotubes, a highly conductive man-made material.

Physicists Nikhil Malvankar and Sibel Ebru Yalcin, with physics professor Mark Tuominen, confirmed the discovery using EFM, a technique that can show how electrons move through materials. "When we injected electrons at one spot in the microbial nanowires, the whole filament lit up as the electrons propagated through the nanowire," says Malvankar.

Yalcin, now at Pacific Northwest National Lab, adds, "This is the same response that you would see in a carbon nanotube or other highly conductive synthetic nanofilaments. Even the charge densities are comparable. This is the first time that EFM has been applied to biological proteins. It offers many new opportunities in biology."

Lovley says the ability of electric current to flow through microbial nanowires has important environmental and practical implications. "Microbial species electrically communicate through these wires, sharing energy in important processes such as the conversion of wastes to methane gas. The nanowires permit Geobacter to live on iron and other metals in the soil, significantly changing soil chemistry and playing an important role in environmental cleanup. Microbial nanowires are also key components in the ability of Geobacter to produce electricity, a novel capability that is being adapted to engineer microbial sensors and biological computing devices."

He acknowledges that there has been substantial skepticism that Geobacter's nanowires, which are protein filaments, could conduct electrons like a wire, a phenomenon known as metallic-like conductivity. "Skepticism is good in science, it makes you work harder to evaluate whether what you are proposing is correct," Lovley points out. "It's always easier to understand something if you can see it. Drs. Malvankar and Yalcin came up with a way to visualize charge propagation along the nanowires that is so elegant even a biologist like me can easily grasp the mechanism."

Biologists have known for years that in biological materials, electrons typically move by hopping along discrete biochemical stepping-stones that can hold the individual electrons. By contrast, electrons in microbial nanowires are delocalized, not associated with just one molecule. This is known as metallic-like conductivity because the electrons are conducted in a manner similar to a copper wire.

Malvankar, who provided the first evidence for the metallic-like conductivity of the microbial nanowires in Lovley and Tuominen's labs in 2011, says, "Metallic-like conductivity of the microbial nanowires seemed clear from how it changed with different temperature or pH, but there were still many doubters, especially among biologists."

To add more support to their hypothesis, Lovley's lab genetically altered the structure of the nanowires, removing the aromatic amino acids that provide the delocalized electrons necessary for metallic-like conductivity, winning over more skeptics. But EFM provides the final, key evidence, Malvankar says.

"Our imaging shows that charges flow along the microbial nanowires even though they are proteins, still in their native state attached to the cells. Seeing is believing. To be able to visualize the charge propagation in the nanowires at a molecular level is very satisfying. I expect this technique to have an especially important future impact on the many areas where physics and biology intersect." he adds.

Tuominen says, "This discovery not only puts forward an important new principle in biology but also in materials science. Natural amino acids, when arranged correctly, can propagate charges similar to molecular conductors such as carbon nanotubes. It opens exciting opportunities for protein-based nanoelectronics that was not possible before."

Lovley and colleagues' microbial nanowires are a potential "green" electronics component, made from renewable, non-toxic materials. They also represent a new part in the growing field of synthetic biology, he says. "Now that we understand better how the nanowires work, and have demonstrated that they can be genetically manipulated, engineering 'electric microbes' for a diversity of applications seems possible."

One application currently being developed is making Geobacter into electronic sensors to detect environmental contaminants. Another is Geobacter-based microbiological computers. This work was supported by the Office of Naval Research, the U.S. Department of Energy and the National Science Foundation.

Janet Lathrop | Eurek Alert!
Further information:
http://www.umass.edu/

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>