Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illuminating Protein Networks in One Step

25.01.2010
A new assay capable of examining hundreds of proteins at once and enabling new experiments that could dramatically change our understanding of cancer and other diseases has been invented by a team of University of Chicago scientists.

Described today in the journal Nature Methods, the new micro-western arrays combine the specificity of the popular "Western blot" protein assay with the large scale of DNA microarrays. The technique will allow scientists to observe much of a cell’s intricate protein network in one experiment rather than peeking at one small piece at a time.

"The proteins are the actual machines that are doing everything in the cell, but nobody's been able to examine them in depth because it's been too complicated. Now, we can begin to do that with this new method," said Richard B. Jones, senior author and assistant professor at and the University of Chicago's Ben May Department for Cancer Research and the Institute for Genomics and Systems Biology.

Since the 1970's, laboratories have used Western blots to measure proteins. Cellular material is loaded into a gel and proteins of different sizes are separated by an electric field. A protein is then targeted by an antibody, allowing scientists to measure the amount present in the cells.

The method has led to numerous findings across the field of cell biology, but is limited by a need for large amounts of cell material and expensive antibodies, and the inability to measure more than a handful of proteins at a time. With hundreds or even thousands of proteins involved in cellular networks, scientists were restricted to observing only a small fraction of protein activity with each experiment.

"When you walk into a dark room and don't have much information, it's difficult to predict where everything is going to be," Jones said. "If someone can simply turn on the light, you don't have to progress one step at a time by bumping into things. With this new technology, you can potentially see everything at the same time."

Micro-western arrays adapt the technology of the micro-array, typically used to assess the expression of thousands of genes in a single experiment, to proteins. With pre-printed micro-western array gels, essentially comprising 96 miniature Western blots, scientists can compare the levels of hundreds of proteins simultaneously, or compare dozens of proteins under dozens of treatment conditions in one shot. Mere nanoliters of cell material and antibodies are needed for the experiments, reducing cost and maximizing the information obtained from a single sample.

To demonstrate the potential of the micro-western array, Jones and colleagues from the University of Chicago and the Massachusetts Institute of Technology looked at the behavior of proteins in a cancer cell line with elevated amounts of epidermal growth factor receptor (EGFR).

"We started asking questions about what we could do that no one else could previously do," Jones said. "We could actually reproducibly see 120 things at a time rather than looking at 1 or 2 or 5."

The experiments found that activating EGFR simultaneously activated several other receptors in the cell – a new discovery that may explain why some tumors become resistant to cancer therapies.

With more information, the method may potentially be used clinically for more precise diagnoses of cancer and other diseases that can direct individualized treatment.

"In the clinic, you're limited by the fact that typically most cancers are diagnosed by one or two markers; you're looking for one or two markers that are high or low then trying to diagnose and treat an illness," Jones said. "Here, we can potentially measure a collection of proteins at the same time and not just focus on one guess. We've never been able do that before."

Other scientists in the field of systems biology said that micro-western arrays would make possible experiments that were previously beyond the scope of laboratory methods.

"I think this is really a breakthrough technology that allows us to monitor in close to real time the activity profiles of modified signaling proteins, which is essentially impossible right now," said Andrea Califano, professor of biomedical informatics at Columbia University. "This opens up a completely new window in terms of the molecular profiling of the cell."

“One of the biggest hurdles for systems biology is the struggle for high density, dynamic and quantitative data, and the micro-western array method will go a long way to address this problem," said Walter Kolch, director of Systems Biology Ireland and Professor at University College Dublin. "It is a fine example of generating exciting new technology from applying a new idea to an old method.”

The paper, "Systems analysis of EGF receptor signaling dynamics with micro-western arrays," will be published online in Nature Methods on Sunday, January 24th. Also credited as authors on the paper are Mark F. Ciaccio and Chih-Pin Chuu from the University of Chicago and Joel P. Wagner and Douglas A. Lauffenburger from the Massachusetts Institute of Technology.

The work was funded by The University of Chicago Comprehensive Cancer Center, the American Cancer Society, the Cancer Research Foundation, the Illinois Department of Health, the National Institutes of General Medical Sciences, the National Cancer Institute, and the National Science Foundation.

Robert Mitchum | Newswise Science News
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>