Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hyperactive "Sleeping Beauty" - MDC Scientists: "Optimized Tool for Gene Delivery"

04.05.2009
Scientists from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany have succeeded in generating a hyperactive "jumping gene" (a transposon) and hope to have an improved tool for basic research and gene therapy.

"The new transposon system is able to introduce genes into cells and to stably insert them into the cell's genome at an unprecedented efficiency," Dr. Lajos Mátés, Dr. Zoltán Ivics and Dr. Zsuzsanna Izsvák point out. They worked together with scientists from the Catholic University of Leuven, Belgium (Nature Genetics, doi: 10.1038/ng.343).*

Transposable elements are molecular parasites that propagate themselves in genomes. But at the same time they provide plasticity to the genome that clearly contributed to the evolution of gene function across the tree of life. About half of the human genome is derived from ancient transposable element sequences, Dr. Izsvák remarks.

However, due to mutations, the vast majority of the transposons became inactivated. Based on transposons in fish that are presumed to have been active approximately 20 million years ago, Dr. Ivics and Dr. Izsvák resurrected a jumping gene more than ten years ago. They named the transposon Sleeping Beauty, because they literally awakened it after a long evolutionary "sleep".

With their new tool, they were able to introduce genes into cells of vertebrates which was impossible before, as researchers previously lacked efficient transposon technologies to do so. However, the efficiency of the new transposon remained limited in some cells, such as stem cells.

Hundredfold Increase in Sleeping Beauty's Activity
The scientists solved this problem by slightly changing the genetic code of Sleeping Beauty, resulting in a hundredfold increase in its activity. Now, a transferred gene (transgene) finds its way into the cell's genome more easily. "Our hyperactive Sleeping Beauty is safer, easier, and cheaper than any other method before," says Dr. Izsvák.

Currently, scientists use disarmed viruses or a variety of non-virus based methods to get genes into cells. However, these methods are either too dangerous or too inefficient for broad application in gene therapy. Experiments with the new transposon system in mice showed that transgenes enter the genome safely and are stably integrated, says Dr. Ivics. Even after a year, the genes were still active.

The MDC researchers hope that their new tool is going to become the new standard method to introduce genes into cells. "Already this year, the first clinical trial with the transposon developed in our lab shall take place in the USA", says Dr. Ivics. According to him, Sleeping Beauty will be used to transport a therapeutic gene into isolated immune cells (T cells). These altered cells will then be used to treat a specific form of cancer (B-lymphoid malignancies) in patients.

The research is part of a project funded by the European Union and coordinated by the MDC. Together with nine partners from seven European countries, the MDC-researchers seek for novel, nonviral technologies for therapeutic gene delivery.

*Molecular Evolution of a Novel Hyperactive Sleeping Beauty Transposase Enables Robust Stable Gene Transfer in Vertebrates

Lajos Mátés1,*, Marinee K. L. Chuah2,*, Eyayu Belay2, Boris Jerchow1, Namitha Manoj1, Abel Acosta-Sanchez2, Dawid P. Grzela1, Andrea Schmitt1, Katja Becker1, Janka Matrai2, Ling Ma2, Esmira Samara-Kuko2, Cony Gysemans5, Diana Pryputniewicz1, Csaba Miskey1, Bradley Fletcher3, Thierry VandenDriessche2, Zoltán Ivics1 and Zsuzsanna Izsvák1,4

* Contributed equally
1 Max Delbrück Center for Molecular Medicine, Berlin, Germany
2 Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium
3 Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610-0267, USA.
4 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary

5 Department of Experimental Medicine, Laboratory for Experimental Transplantation, University of Leuven, Belgium

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de
http://www2.mdc-berlin.de/izsvak/eng/pages/disclaimer.htm

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>