Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humidity increases odor perception in terrestrial hermit crabs

04.07.2012
Olfaction in land crabs is still in an early transitional stage between life in water and on land.

Max Planck scientists have found out that the olfactory system in hermit crabs is still underdeveloped in comparison to that of vinegar flies. While flies have a very sensitive sense of smell and are able to identify various odor molecules in the air, crabs recognize only a few odors, such as the smell of organic acids, amines, aldehydes, or seawater.


Adult Coenobita clypeatus hermit crab using a discarded snail shell for protection: Both pairs of antennae are clearly visible. Olfactory receptors are located on the inner pair of antennae, which are bent upwards. The crabs’ sense of smell is still underdeveloped in comparison to insect olfaction. Max Planck Institute for Chemical Ecology/ Krång

Humidity significantly enhanced electrical signals induced in their antennal neurons as well as the corresponding behavioral responses to the odorants. The olfactory sense of vinegar flies, on the other hand, was not influenced by the level of air moisture at all. Exploring the molecular biology of olfaction in land crabs and flies thus allows insights into the evolution of the olfactory sense during the transition from life in water to life on land. (Proc. R. Soc. B, June 2012)

Crabs and flies

Crabs and flies are arthropods. Like many other life forms, they made a transition from water to land life in ancient times. The ancestors of the family of terrestrial hermit crabs (Coenobitidae) probably took this step about 20 million years ago. Today, hermit crabs live their entire lives on land, except for the larval stage. Odor signals are important cues for the crabs’ search for food. In order to detect odor molecules outside the water on land, the sensory organs of arthropods had to adapt to the new, terrestrial environment. How did sensory perception evolve during the transition from sea to land?

“The land hermit crab Coenobita clypeatus is an ideal study object to answer this question,” says Bill Hansson, director of the Department of Evolutionary Neuroethology at the Max Planck Institute for Chemical Ecology in Jena, Germany. The animals live in humid regions close to the sea and regularly visit water sources. Females release the larvae into the sea, where they grow into young crabs. These young crabs look for empty snail shells and live on land. They eat fruits and plants. This way of life suggests that the olfactory sense in crabs is still at an early stage of development.

Voltage and behavior

In a series of experiments, Anna-Sara Krång, who worked on an EU-funded Marie Curie Project, tested 140 odor substances with different chemical properties, such as acids, aldehydes, amines, alcohols, esters, aromatic compounds, and ethers. She measured the excitation in the neurons of the crabs’ antennae in response to single substances. The results were so-called “electroantennograms” (EAGs) which measured tiny voltage changes across the cell membranes in the microvolt range.

A striking feature of the subsequently performed bioassays was that the crabs’ behavioral responses to odorants were more obvious and much faster at a significantly increased humidity, assumingly due to an enhanced electrical excitability of their antennal neurons. The EAG showed in fact a reaction at the neurons which was three to ten times stronger if active odors were applied at a higher humidity. In contrast, antennal neurons of vinegar flies did not show any differences and responded evenly and independently of the degree of humidity.

Evolution of olfaction

The analysis of the experiments revealed that hermit crabs responded primarily to water-soluble polar odorants, such as acids, aldehydes and amines, because their effect may be easily enhanced in humid air. These results suggest that crabs have so-called ionotropic receptors in their antennal neurons. Such receptors were found in other crustaceans, such as water fleas (Daphnia pulex) or lobsters (Homarus americanus). In the water flea genome, no genetic information was actually found for so-called olfactory receptors, which are responsible for the highly sensitive olfactory system in insects, such as vinegar flies. Although the receptor genes which are present in the hermit crab genome have not been elucidated yet, the scientists assume that olfaction in crabs is mediated by the original, evolutionarily older ionotropic receptors. It is generally believed that the ancestors of many insect species made the transition from the seas to the continents during much earlier geological eras and that insects have adapted their olfactory system to life on land very well. Terrestrial crustaceans, on the other hand, may be able to use their sense of smell on land thanks to a basic molecular “equipment”, but their olfaction is still quite underdeveloped in comparison to insects. Therefore hermit crabs usually stay near the coast: not only because of the short way back to the sea where they reproduce, but also because of their limited sense of smell which does not allow them to orient themselves without any problems in the dry air of the heartlands. [JWK/AO]

Original article:

Anna-Sara Krång, Markus Knaden, Kathrin Steck, Bill S. Hansson: Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus. Proceedings of the Royal Society B, June 6, 2012, online first. Doi: 10.1098/rspb.2012.0596.

Further Information:

Prof. Dr. Bill S. Hansson, +49 3641 571401, hansson@ice.mpg.de
Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise
11.12.2019 | Max-Planck-Institut für Polymerforschung

nachricht Predicting a protein's behavior from its appearance
11.12.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

Tuberculosis: New drug substance BTZ-043 is being tested on patients for the first time

11.12.2019 | Health and Medicine

One-third of recent global methane increase comes from tropical Africa

11.12.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>