Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Noise Has Ripple Effects on Plants

27.03.2012
Clamor affects more than birds and other animals

A growing body of research shows that birds and other animals change their behavior in response to human noise, such as the din of traffic or the hum of machinery.

But human clamor doesn't just affect animals.

Because many animals also pollinate plants or eat or disperse their seeds, human noise can have ripple effects on plants, too, finds a new study reported in the March 21, 2012, issue of the journal Proceedings of the Royal Society B.

In cases where noise has ripple effects on long-lived plants like trees, the consequences could last for decades, even after the source of the noise goes away, says lead author Clinton Francis of the National Science Foundation (NSF) National Evolutionary Synthesis Center in Durham, North Carolina.

In previous studies, Francis and colleagues found that some animals increase in numbers near noisy sites, while others decline.

But could animals' different responses to human noise have indirect effects on plants, too?

To find out, the researchers conducted a series of experiments from 2007 to 2010 in the Bureau of Land Management's Rattlesnake Canyon Wildlife Area in northwestern New Mexico.

The region is home to thousands of natural gas wells, many of which are coupled with noisy compressors for extracting the gas and transporting it through pipelines.

The compressors roar and rumble day and night, every day of the year.

The advantage of working in natural gas sites is they allow scientists to study noise and its effects on wildlife without the confounding factors in noisy areas like roadways or cities, such as pollution from artificial light and chemicals, or collisions with cars.

As part of their research, Francis and colleagues first conducted an experiment using patches of artificial plants designed to mimic a common red wildflower in the area called scarlet gilia.

Each patch consisted of five artificial plants with three "flowers" each--microcentrifuge tubes wrapped in red electrical tape--which were filled with a fixed amount of sugar water for nectar.

To help in estimating pollen transfer within and between the patches, the researchers also dusted the flowers of one plant per patch with artificial pollen, using a different color for each patch.

Din levels at noisy patches were similar to that of a highway heard from 500 meters away, Francis said.

When the researchers compared the number of pollinator visits at noisy and quiet sites, they found that one bird species in particular--the black-chinned hummingbird--made five times more visits to noisy sites than quiet ones.

"Black-chinned hummingbirds may prefer noisy sites because another bird species that preys on their nestlings, the western scrub jay, tends to avoid those areas," Francis said.

Pollen transfer was also more common in the noisy sites.

If more hummingbird visits and greater pollen transfer translate to higher seed production for the plants, the results suggest that "hummingbird-pollinated plants such as scarlet gilia may indirectly benefit from noise," Francis said.

Another set of experiments revealed that noise may indirectly benefit some plants, but is bad news for others.

In a second series of experiments at the same study site, the researchers set out to discover what noise might mean for tree seeds and seedlings, using one of the dominant trees in the area--the piñon pine.

Piñon pine seeds that aren't plucked from their cones fall to the ground and are eaten by birds and other animals.

To find out if noise affected the number of piñon pine seeds that animals ate, the researchers scattered piñon pine seeds beneath 120 piñon pine trees in noisy and quiet sites, using a motion-triggered camera to figure out what animals took the seeds.

After three days, several animals were spotted feeding on the seeds, including mice, chipmunks, squirrels, birds and rabbits.

But two animals in particular differed between quiet and noisy sites--mice, which preferred noisy sites, and western scrub jays, which avoided them altogether.

Piñon pine seeds that are eaten by mice don't survive the passage through the animal's gut, Francis said, so the boost in mouse populations near noisy sites could be bad news for pine seedlings in those areas.

In contrast, a single western scrub jay may take hundreds to thousands of seeds, only to hide them in the soil to eat later in the year.

The seeds they fail to relocate will eventually germinate, so the preference of western scrub jays for quiet areas means that piñon pines in those areas are likely to benefit.

In keeping with their seed results, the researchers counted the number of piñon pine seedlings and found that they were four times as abundant in quiet sites compared with noisy ones.

It may take decades for a piñon pine to grow from a seedling into a full-grown tree, Francis said, so the consequences of noise may last longer than scientists thought.

"Fewer seedlings in noisy areas might eventually mean fewer mature trees, but because piñon pines are so slow-growing the shift could have gone undetected for years," he said.

"Fewer piñon pine trees would mean less critical habitat for the hundreds of species that depend on them for survival."

Other authors of the study include Catherine Ortega, most recently of Fort Lewis College, and Alexander Cruz and Nathan Kleist of the University of Colorado, Boulder.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Robin Ann Smith, NESCENT (919) 668-4544 rsmith@nescent.org
Related Websites
NSF National Evolutionary Synthesis Center: http://www.nescent.org/
he National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>