Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How toxic protein aggregates develop

02.03.2016

Protein aggregates are deemed to be one reason for the death of nerve cells in disorders such as Alzheimer's or Huntington's disease. As researchers at the Max Planck Institute of Biochemistry report in the current issue of Nature, they have now decoded a new cellular mechanism for the development of aggregates. Missing stop signals in the production of proteins lead erroneously to long lysine chains at the end of the protein. This in turn blocks the ribosomes, the cell's protein factory. Healthy cells detect blocked ribosomes and rapidly destroy useless proteins. If the necessary quality control machinery does not function properly, defective proteins accumulate and form toxic aggregates.

In order to be able to treat neurodegenerative disorders in future, researcher Ulrich Hartl, Head of the Department of Cellular Biochemistry at the Max Planck Institute of Biochemistry, and his team have for many years been studying the cellular causes for the death of nerve cells. A determining cause is believed to be protein deposits – aggregates of misfolded proteins.


Mistakes in the blueprint for proteins (mRNA) lead to the production of useless proteins in the ribosomes. Since the quality control is broken, these proteins accumulate and form toxic aggregates.

Monika Krause © MPI of Biochemistry

"We were able to show that the formation of aggregates is promoted by defects in the protein blueprint and these are not detected by the internal quality control machinery", explains Young-Jun Choe, first author of the study together with Sae-Hun Park.

In each cell, proteins perform vital functions, acting as small molecular machines. "DNA can be envisaged as a huge library of protein blueprints that are located in the cell nucleus. To manufacture a protein, a copy of the blueprint, the mRNA, is first made. This is then directed from the cell nucleus to the ribosomes, which then build the protein from amino acids", says Choe.

The mRNA contains a start signal, the information about the protein structure, a stop signal and, at the end, a poly(A) tail. If the blueprint is damaged, for example due to radiation or mutagenic substances, this can lead to the loss of this stop signal.

As a result, once the protein has been manufactured in the ribosomes, the completed protein cannot be released. Instead, the poly(A) tail is interpreted as the blueprint and additional amino acids are attached. The lysine chain that is positively charged as a result blocks the protein factory and the manufacture of protein comes to a standstill.

Healthy cells have a very efficient quality control process when it comes to the manufacture of protein. Misfolded and useless proteins are selected, repaired or rapidly destroyed. Ltn1p is an important component of quality control. "If Ltn1p is not active in pathologically modified cells or if other components of quality control are missing, defective proteins accumulate and form aggregates in cell interiors", says Park.

Using a mouse model, the researchers can now demonstrate the fatal consequences of a quality control malfunction. Animals with the relevant mutation show symptoms of advanced neurodegeneration and a restricted ability to move.

The protein aggregates that develop have a sticky surface and act as a seed. They ultimately also bind functioning proteins, which are free of defects and vital for the cell. As a result, the cell is destabilized and, in the long run, is damaged. Interestingly, according to Ulrich Hartl, the cell seems to follow a known pattern in this regard.

"We already know from previous studies on the protein huntingtin, which spontaneously forms aggregates and is responsible for the development of the neurodegenerative disorder Huntington's disease, that protein aggregates also bind to essential proteins that have no defects.”

“Our results not only demonstrate a potential mechanism for the development of neurodegenera-tive disorders but we have also found another example of the way in which proteins can form aggregates and damage the cell. This confirms our assumption that the suppression of the aggregation of proteins represents a promising therapeutic approach for a large number of neurodegenerative disorders that are currently still incurable", says Hartl, summarizing the results of the study.

Original publication:
Y.-J. Choe & S.-H. Park, T. Hassemer, R. Körner, L. Vincenz-Donnelly, M. Hayer-Hartl & F.-U. Hartl: Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature, February 2016
DOI: 10.1038/nature16973.

Contact:
Prof. Dr. F.-Ulrich Hartl
Department of Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/hartl - Website of the Research Department "Cellular Biochemistry" (F.-Ulrich Hartl)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>