Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How rapeseed could be used as a protein source for human nutrition: Bitter rapeseed

31.01.2019

Rapeseed doesn't just contain oil but high-quality protein, too. However, protein extracts from rapeseed have an intense, bitter off-taste. A team led by food chemist Thomas Hofmann has now identified the substance that is pivotal for the bitter taste. This is a first step towards developing rapeseed for the human protein supply.

According to the Food and Agriculture Organization of the United Nations (FAO), the demand for food will approximately double by 2050 due to the growing world population.


Rapeseed blossoms, TU Muenchen’s research station Roggenstein

Image: A. Heddergott / TUM


Corinna Dawid and Christoph Hald presenting a glass beaker with rapeseed in their laboratory at the chair for Food Chemistry and Molecular Sensory Science at the Technical University of Munich.

Image: Sabrina Schalk / TUM

"Bottlenecks are to be expected in this context, particularly in protein supply," says Thomas Hofmann, who heads the Chair of Food Chemistry and Molecular Sensory Science at the Technical University of Munich (TUM).

According to Hofmann, who is also Director of the Leibniz-Institute for Food Systems Biology, it is therefore important to develop new plant protein sources for human nutrition. And rapeseed is a good local source.

Rapeseed contains high-quality protein

Rapeseed doesn't just contain oil but high-quality protein too, which contains many essential amino acids. Worldwide around 1.12 million tons of crude protein are produced annually from rapeseed oil. Although farmers have long used this so-called rapeseed cake as a protein feed for animals, it has not played a role as a protein source in human nutrition so far.

One reason is that the accompanying substances contained in rapeseed strongly impair the taste of the obtained protein isolates. These substances include, for example, very bitter-tasting secondary plant constituents. Hofmann and his team therefore looked into the issue of which bitter substances cause the rapeseed protein's unpleasant bad taste.

The key substance that makes rapeseed protein taste bitter

The researchers investigated three different protein isolates using mass spectrometric analysis methods and taste tests. The first isolate was an extract of all the proteins contained in rapeseed meal.

The second isolate predominantly contained cruciferin and the third napin, which are the rapeseed's two main storage proteins. All three isolates had a protein content of 80 to 90 percent.

As the investigations show for the first time, a compound called kaempferol 3-O-(2‘‘‘-O-sinapoyl-ß-sophoroside) is the key substance that makes protein extracts from rapeseed inedible.

The cruciferin isolate in particular contained a large amount of this bitter substance with 390 milligrams per kilogramme. The rapeseed meal and napin isolate had less than a tenth of the quantity, but still tasted bitter in the sensory test.

Starting point for new processes

"Since we now know the cause of the bitter off-taste, it is much easier to develop suitable technological processes or breeding strategies that can be used to produce tasty, protein-rich foods from rapeseed," said co-author Corinna Dawid, who heads the Phytometabolomics research group at TUM.

Further information:

The research project was funded by the Federal Ministry of Education and Research (BMBF) as part of the RaPEQ project (031B0198D). The project partner was the Pilot Pflanzenöltechnologie e.V. research institute in Magdeburg.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Hofmann

Technical University of Munich

Chair of Food Chemistry and Molecular Sensory Science,

Director of the Leibniz-Institute for Food Systems Biology at TUM

Tel.: +49 8161 71 2902
E-mail: thomas.hofmann@tum.de

http://www.molekulare-sensorik.de/index.php?id=2&L=1
https://www.leibniz-lsb.de/en/

Dr. Corinna Dawid

Technical University of Munich

Chair of Food Chemistry and Molecular Sensory Science, 

Workgroup Phytometabolomics

Tel.: +49 8161 71 2923
E-mail: corinna.dawid@tum.de
http://www.molekulare-sensorik.de/index.php?id=75&L=1

Originalpublikation:

C. Hald, C. Dawid, R. Tressel, T. Hofmann:
Kaempferol 3-O-(2'''-O-sinapoyl-β-sophoroside) causes the undesired bitter taste of canola/rapeseed protein isolates
J Agric Food Chem, 67: 372–378, DOI: 10.1021/acs.jafc.8b06260
https://pubs.acs.org/doi/10.1021/acs.jafc.8b06260

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35222/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>