Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Plants turn into Zombies

16.10.2015

Scientists from Jena University (Germany) shed light on the molecular reasons for a bacterial plant disease

It begins as a fairy tale which later turns into a horror story: Lusciously flowering plants, surrounded by a large number of insects. Usually, both sides profit from the encounter: Feasting on the plant juice and pollen, the insects pollinate the flowers and thus secure the survival of the plants. However, sometimes the insects – in this case a certain species of leafhoppers – can bring disaster to the plants, which they are not able to overcome.


Instead of blossoms (top left), phytoplasma infected plants (asters in this case) form vestigial leafs (top right) as well as vegetative shoots (bottom).

credit: Alan Lorance

“The insects transmit bacteria, so-called phytoplasmas, which destroy the life cycle of the plants,” says Prof. Dr. Günter Theißen of Friedrich Schiller University Jena (Germany). Instead of blossoming, the afflicted specimens only form vestigial leaf structures and thus prevent sexual reproduction.

“These plants become the living dead,“ the geneticist points out. “Eventually they only serve the spread of the bacteria.“ Therefore, the scientists also call these plants 'zombies'.

Prof. Theißen and his Jena team have just succeeded in making a significant contribution to understanding the molecular-biological reasons for this phenomenon. In the latest issue of the science magazine 'Trends in Plant Science' the researchers explain how the parasites interfere with the development of plants in such a disastrous manner and inflict a 'zombie' existence on them (DOI: 10.1016/j.tplants.2015.08.004).

One of the main culprits is a protein called SAP54, explains the post-graduate student Florian Rümpler, the lead author of the publication. “This protein comes from the bacteria and bears a strong structural resemblance to proteins which form a regulatory complex inside the plant, which permits a normal development of the blossom.“

On basis of modelling studies, the Jena scientists were able to show that SAP54 imitates the structure of certain MADS-domain-proteins in the infected plants that perfectly that they connect with SAP54 instead of their own proteins. This eventually leads to the degradation of the MADS-domain-proteins, so that they can no longer fulfil their normal function within the regulatory complexes of the blossom development. “This prevents the formation of petals and flower organs,“ Rümpler explains.

Another unanswered question is where the similarity of the molecules comes from. “It is conceivable that both proteins trace back to a common origin,“ Rümpler says. “However we suspect that this is not the case.“ Hence, the research team of Jena University postulates in their new publication that the bacterial protein has in the course of its evolution adapted so precisely to its host.

Whether the new findings will be put into practical use one day remains to be seen. The phenomenon of the phytoplasma infestation has been known for a long time; e.g. fruit growers and allotment gardeners refer to it as 'broom growth' on apple trees, and also for winegrowers and plant breeders, phytoplasmoses occasionally lead to drops in yield.

“Although, we understand the infection process better now, we are not yet able to prevent it,“ Theißen says. Nevertheless, he and his colleagues consider the new findings a promising basis for further fundamental research. The impact of the phytoplasma infection could for instance be useful for a better understanding of the genesis of blossoms in the course of evolution.

Original Publication:
Rümpler F et al. Did convergent protein evolution enable phytoplasmas to generate ‘zombie plants’? Trends in Plant Science, 2015, DOI: 10.1016/j.tplants.2015.08.004).

Contact:
Prof. Dr. Günter Theißen, Florian Rümpler
Department of Genetics
Friedrich Schiller University Jena
Philosophenweg 12, 07743 Jena
Germany
Phone: ++49 3641 / 949550, ++49 3641 / 949564
Email: guenter.theissen[at]uni-jena.de, florian.ruempler[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>