Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018

In collaboration with fellow researchers, chemists at the Technical University of Munich (TUM) have developed a process that, according to initial calculations, can facilitate economically removing the greenhouse gas carbon dioxide from the atmosphere. The latest World Climate Report (IPCC Special Report on Global Warming of 1.5 ° C) acknowledges the global relevance of the process.

There is an acute need for action if global warming is to be mitigated to a reasonable extent. In this context, the current World Climate Report winks at a technology developed by chemists at the Technical University of Munich.


The carbon fiber reinforcement gives the granite plate an extremely high strength, enabling completely new, efficient constructions.

Photo: Andreas Battenberg / TUM


TUM’s AlgaeTec facility at Ludwig Bölkow Campus, south of Munich.

Photo: Andreas Heddergott / TUM

Opening an option for a net carbon sink, the technology tackles the problem of atmospheric warming at the root.

Algae convert carbon dioxide from the atmosphere, power plants or steel processing exhaust into algae oil. In a subsequent step, this is then used to produce valuable carbon fibers – economically, as initial analyses show.

A climate-neutral process

Important technical groundwork was done by Professor Thomas Brück and his team at the Algae Cultivation Center of the Technical University of Munich.

The algae investigated at the center not only produce biofuel, but can also be used to efficiently produce polyacrylonitrile (PAN) fibers. The energy of parabolic solar reflectors then chars the PAN-fibers to yield carbon fibers in a CO2-neutral manner.

Carbon fibers can be deployed to produce lightweight and high-strength materials that. At the end of their life cycle, the carbon fibers can be stockpiled in empty coal seams, permanently removing the associated carbon dioxide equivalents from the atmosphere.

A climate-friendly economic model

Brück's colleague Prof. Uwe Arnold and Dipl.-Ing. Kolja Kuse also examined the economic aspects, technical applications and environmental impact of the entire process. "This is a novel, climate-friendly economic model in which we intelligently combine standard processes with innovations," says Arnold.

"When you make plastics from carbon dioxide, it is quickly returned to the atmosphere through waste incineration plants following a few years of use," says Kuse. "With the final safe storage, we remove the carbon dioxide from the atmosphere for millennia. This also makes the process clearly superior to carbon capture and storage (CCS) in the underground."

Carbon fibers from algae are no different from conventional fibers and can therefore be used in all existing processes. Another important field of application could be the construction industry, which accounts for a significant proportion of global carbon dioxide emissions.

Carbon fibers can replace structural steel in construction materials. Thanks to their strength, they save on cement, and granite reinforced with carbon fiber can even be used to produce beams that have the same load-bearing capacity as steel but are as lightweight as aluminum.

Algae farms the size of Algeria

Brück now plans to further improve the algae technology. Large-scale plants are conceivable in southern Europe and North Africa. "The system is easily scalable to large areas," says Brück. "Plants which together would cover the size of Algeria would offset all CO2 emissions from air transport."

Brück rejects any suggestion that the technology would compete with the agricultural use of land, as is the case with biogas. "Saltwater algae thrive in sunny areas. In North Africa, for example, there are ample stretches of land where agriculture makes no sense."

###

Further information:

The research was funded by the Werner Siemens Foundation and the European Business Council for Sustainable Energy e.V. In addition to the Werner Siemens Chair of Synthetic Biotechnology at the Technical University of Munich, AHP GmbH & Co. KG (Berlin), TechnoCarbonTechnologies GbR (Munich) and the Institute of Textile Technology of RWTH Aachen University participated in the research.

Publications:

Carbon Capture and Sustainable Utilization by Algal Polyacrylonitrile Fiber Production: Process Design, Techno-Economic Analysis, and Climate Related Aspects. Uwe Arnold, Thomas Brück, Andreas De Palmenaer und Kolja Kuse, Industrial & Engineering Chemistry Research 2018 57 (23), 7922-7933, DOI: 10.1021/acs.iecr.7b04828

Energy-Efficient Carbon Fiber Production with Concentrated Solar Power: Process Design and Techno-economic Analysis. Uwe Arnold, Andreas De Palmenaer, Thomas Brück und Kolja Kuse. Industrial & Engineering Chemistry Research 2018 57 (23), 7934-7945, DOI: 10.1021/acs.iecr.7b04841

Cited in “IPCC Special Report on Global Warming of 1.5°C”, Chapter 4: Strengthening and implementing the global response;
http://report.ipcc.ch/sr15/pdf/sr15_chapter4.pdf

Wissenschaftliche Ansprechpartner:

Prof. Thomas Brück
Technical University of Munich
Werner Siemens Chair of Synthetic Biotechnology (WSSB)
Lichtenbergstr. 4, 85748 Garching, Germany
Phone: +49 89 289 13253, e-mail: brueck@tum.de
Web: http://www.wssb.ch.tum.de/index.php?id=761&L=1

Originalpublikation:

Carbon Capture and Sustainable Utilization by Algal Polyacrylonitrile Fiber Production: Process Design, Techno-Economic Analysis, and Climate Related Aspects. Uwe Arnold, Thomas Brück, Andreas De Palmenaer und Kolja Kuse, Industrial & Engineering Chemistry Research 2018 57 (23), 7922-7933, DOI: 10.1021/acs.iecr.7b04828

Energy-Efficient Carbon Fiber Production with Concentrated Solar Power: Process Design and Techno-economic Analysis. Uwe Arnold, Andreas De Palmenaer, Thomas Brück und Kolja Kuse. Industrial & Engineering Chemistry Research 2018 57 (23), 7934-7945, DOI: 10.1021/acs.iecr.7b04841

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35078/ Press release on TUM-website
https://mediatum.ub.tum.de/1455514 High resolution images
https://pubs.acs.org/doi/10.1021/acs.iecr.7b04828 Original publication I
https://pubs.acs.org/doi/10.1021/acs.iecr.7b04841 Original publication II
http://report.ipcc.ch/sr15/ IPCC Special Report on Global Warming of 1.5 °C

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>