Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-end microscopy reveals structure and function of crucial metabolic enzyme

29.08.2019

Structural biologists reveal the atomic structure and regulative mechanism of the metabolic enzyme transhydrogenase – Results are the first to be published based on state-of-the-art cryo-electron microscope at IST Austria

The enzyme transhydrogenase plays a central role in regulating metabolic processes in animals and humans alike. Malfunction can lead to serious disorders. For the first time, structural biologists at the Institute of Science and Technology Austria (IST Austria) have now visualized and analyzed the enzyme’s atomic structure with the support of the institute’s newly installed high-end cryo-electron microscope. The data presented in the journal Nature are relevant for the development of currently unavailable therapeutic options.


A 3D printed model of transhydrogenase.

IST Austria – Domen Kampjut/Sazanov group

Within each cell, the power houses called mitochondria continuously break down molecules derived from food to generate energy as well as to produce new molecules that serve as building blocks of cells.

Balancing these two opposing processes is accomplished by an enzyme called proton-translocating transhydrogenase or NNT (nicotinamide nucleotide transhydrogenase). NNT sits in the mitochondria’s membrane and uses the electrochemical proton gradient generated by cellular respiration to provide the mitochondria with just the right amount of the co-enzyme NADPH, a vital metabolic precursor.

The proper functioning of NNT is crucial for metabolic regulation in all animals including humans. However, the details of how NNT accomplishes the coordinated transfer of protons across the membrane and synthesis of NADPH have remained obscure due to the lack of knowledge about the enzyme’s atomic structure.

Domen Kampjut, PhD student at IST Austria, and his supervisor and group leader Professor Leonid Sazanov have now for the first time visualized the molecule of mammalian NNT at a scale that allowed them to identify the structural principles of the enzyme’s channel gating—and thus to gain a deeper understanding of its functioning (and malfunctioning).

“Resolution revolution” at IST Austria

The atomic analysis of the enzyme NNT was only possible by taking advantage of state-of-the-art technology developments in cryo-electron microscopy (cryo-EM), the so-called “resolution revolution”. Parts of the current study’s data were generated using a new cryo-electron microscope installed at IST Austria only in fall 2018 and are the first to be published using one of three new machines, the “300 kV FEI Titan Krios”, in Klosterneuburg.

The cryo-EM analysis of NNT—which involved extensive time- and effort-consuming image processing and the support of the experts of the centrally organized and well-established Electron Microscopy Facility at IST Austria—delivered near atomic-resolution images of the molecule’s three different domains in various conformational states.

Opening the gate for protons—and new forms of medical treatment

With these images, the structural biologists could show how the domain that binds NADPH can open the proton channel to either side of the mitochondrial membrane. First author Domen Kampjut: “NNT has been studied for a few decades, but classical imaging methods such as X-ray crystallography have failed to give a detailed look into its structure because it is highly dynamic. Furthermore, membrane proteins like NNT are particularly challenging to study as they are fragile and difficult to purify in large amounts needed for crystallography. Thus, only with cryo-EM could we finally see clearly how the proton transfer works—and with this, find a missing piece of the puzzle on the way to understanding what to do if it does not work.”

Professor Leonid Sazanov adds: “These structures are particularly exciting because transhydrogenase performs an amazing volte-face by rotating an entire, quite large, NADPH-binding domain 180 degrees ‘up’ or ‘down’. This is, as far as we know, unique among studied enzyme mechanisms. However, such a rotation now makes complete sense in view of our proposed mechanism and it shows how nature can ‘creatively’ solve challenging tasks.”

The results are an important further step towards the development of novel therapies. For instance, the development of currently unavailable NNT inhibitors has great therapeutic potential with regard to metabolic dysfunctions including metabolic syndrome, and some cancers.

Background information
New cryo-EM at IST Austria—high-end technology to support high-end research

In 2018, IST Austria purchased and installed three state-of-the-art cryo-electron microscopes (cryo-EMs) as part of the established and centrally organized Electron Microscopy Facility of the institute, allowing scientists to observe biological structures at near-atomic scales. The technology of cryo-EM, which earned development contributors the 2017 Nobel Prize in chemistry, has led to a series of breakthrough discoveries in the life sciences in the recent years. Using cryo-EM, biological samples such as proteins can be observed in their natural state, rendering this method indispensable in structural biology.

IST Austria’s cryo-EM facility consists of one 300 kV, one 200 kV, and one cryo-dedicated focused ion beam scanning electron microscope (cryo FIB/SEM). The “300 kV FEI Titan Krios”, a cryo transmission electron microscope (cryo-TEM), used in this study is particularly noteworthy: “This machine is unique in Austria,” says facility manager Ludek Lovicar. “Currently, no other Austrian institution has a state-of-the-art 300 kV electron microscope under cryo conditions.” The current study demonstrates that scientific excellence paired with innovative technology can bring about groundbreaking research results and increase their application potential.

More information: https://ist.ac.at/en/research/scientific-service-units/electron-microscopy-facil...


Original publication:
Domen Kampjut & Leonid A. Sazanov. 2019. Structure and mechanism of mitochondrial proton-translocating transhydrogenase. Nature. DOI: 10.1038/s41586-019-1519-2

Grant information:
This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 665385.

Originalpublikation:

https://www.nature.com/articles/s41586-019-1519-2

Weitere Informationen:

https://seafile.ist.ac.at/d/0441b17c26c7406cafe0/ Picture download

Bernhard Wenzl | idw - Informationsdienst Wissenschaft
Further information:
https://ist.ac.at/de/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>