Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates

21.02.2018

Ants adapt their care behavior to their own immune status | Paper in PNAS

Ants care for their sick nest mates in different ways, depending on their own immune status. When they themselves are susceptible to dangerous superinfections, they use a different method to care for sick colony members compared to ants that are not susceptible, thus protecting themselves from infection. This is the result of a study of Professor Sylvia Cremer’s research group at the Institute of Science and Technology Austria (IST Austria), with first authors Matthias Konrad and Christopher Pull. The study was published today in the journal PNAS.


Garden ant workers interacting with one another.

Roland Ferrigato and Sina Metzler, IST Austria

In their colonies, ants such as the invasive garden ant Lasius neglectus live in a very confined space. This carries the risk that diseases can spread rapidly and threaten the entire colony. Sylvia Cremer and her group have already shown in previous studies that ants of the species Lasius neglectus fend off the pathogenic fungus Metarhizium by intensively cleaning and caring for colony members whose bodies have been contaminated by fungal spores. In the current study, Sylvia Cremer and her group addressed the question of how the caring ants protect themselves from infection.

Care means protection and risk

There are two ways for ants to care for nest mates: either by grooming off pathogens or by chemically disinfecting them. However, the extensive contact between contaminated and caring ants during care may lead to a transmission of the pathogen, which often induces low-level infections in the caring individual that do not cause disease.

As the research team has shown in a previous study, such low-level infections of the caring ants stimulate their immune system and can lead to a protective effect against future infection, similar to the early form of vaccination used by humans, termed variolation. If this ant comes in contact with the same pathogen again in the future, its defense against the fungal pathogen is already upregulated, and the course of the disease is mild.

However, in the current study the research team showed that this immunization caused by low-level infections, unlike modern vaccinations in humans, has a cost. If the ant comes in contact with a second, different pathogen, it is not only unprotected, but is even more susceptible to the second pathogen, which can subsequently cause a highly detrimental, superinfection.

Flexible care protects against superinfection

Although ants with low-level infections are more susceptible to superinfections, the researchers show that this altered disease susceptibility affects how ants care for their infectious nest mates. They continue to perform care, but alter how they do so to decrease their risk of contracting a second infection. This risk avoidance is flexible and depends on the current immune status of the ant. If an ant is protected against a pathogen because it is currently immunized, it grooms the infected nestmate more than non-immunized ants. “This close contact means that the caring ant is exposed to a large number of fungal spores from the infectious nest mates, but it is less susceptible to them because of previous immune stimulation,” explains Sylvia Cremer.

The situation is different when the ant encounters a nest mate carrying a pathogen that the caring ant is susceptible to. If the ant has developed a susceptibility to pathogen B due to a previous infection with pathogen A, then it sprays the contaminated nestmate carrying pathogen B with formic acid to neutralize the pathogen. This avoids the need for grooming and the close contact that comes with it, preventing pathogen transmission and protecting the caring ant from superinfection.

“This risk-averse care improves and maintains the health of the caring animals and thus of the whole colony. In humans, nursing staff and doctors also pay attention to their immune status, for example by vaccinating before entering a dangerous zone. Importantly, ants are capable of this adjustment without the need for vaccination records that humans typically rely on” explains Sylvia Cremer.

Matthias Konrad and Christopher Pull are the first authors of the study. Matthias Konrad was a PhD student supervised by Sylvia Cremer from 2009 to 2014, and joined IST Austria in 2010 as one of the first PhD students, and stayed for one year after his PhD as a postdoc in the Cremer group. Christopher Pull was a PhD student in the group of Sylvia Cremer at IST Austria from 2012 to 2017, and is now a postdoc at the Royal Holloway University, London. Sylvia Cremer studies the social immune system in ants with the aim of finding out more about epidemiology and disease dynamics in societies.

About IST Austria – www.ist.ac.at

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

Original article:
Matthias Konrad, Christopher D. Pull et al: "Ants avoid superinfections by performing risk-adjusted sanitary care"
http://www.pnas.org/content/early/2018/02/16/1713501115

Weitere Informationen:

http://www.pnas.org/content/early/2018/02/16/1713501115 Link to PNAS article
http://ist.ac.at/research-groups-pages/cremer-group/ Research group website

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Lasius neglectus ants colony fungal spores immune system infections

More articles from Life Sciences:

nachricht New contents: Neuronal Parkinson inclusions are different than expected
26.06.2019 | Universität Basel

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>