Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates

21.02.2018

Ants adapt their care behavior to their own immune status | Paper in PNAS

Ants care for their sick nest mates in different ways, depending on their own immune status. When they themselves are susceptible to dangerous superinfections, they use a different method to care for sick colony members compared to ants that are not susceptible, thus protecting themselves from infection. This is the result of a study of Professor Sylvia Cremer’s research group at the Institute of Science and Technology Austria (IST Austria), with first authors Matthias Konrad and Christopher Pull. The study was published today in the journal PNAS.


Garden ant workers interacting with one another.

Roland Ferrigato and Sina Metzler, IST Austria

In their colonies, ants such as the invasive garden ant Lasius neglectus live in a very confined space. This carries the risk that diseases can spread rapidly and threaten the entire colony. Sylvia Cremer and her group have already shown in previous studies that ants of the species Lasius neglectus fend off the pathogenic fungus Metarhizium by intensively cleaning and caring for colony members whose bodies have been contaminated by fungal spores. In the current study, Sylvia Cremer and her group addressed the question of how the caring ants protect themselves from infection.

Care means protection and risk

There are two ways for ants to care for nest mates: either by grooming off pathogens or by chemically disinfecting them. However, the extensive contact between contaminated and caring ants during care may lead to a transmission of the pathogen, which often induces low-level infections in the caring individual that do not cause disease.

As the research team has shown in a previous study, such low-level infections of the caring ants stimulate their immune system and can lead to a protective effect against future infection, similar to the early form of vaccination used by humans, termed variolation. If this ant comes in contact with the same pathogen again in the future, its defense against the fungal pathogen is already upregulated, and the course of the disease is mild.

However, in the current study the research team showed that this immunization caused by low-level infections, unlike modern vaccinations in humans, has a cost. If the ant comes in contact with a second, different pathogen, it is not only unprotected, but is even more susceptible to the second pathogen, which can subsequently cause a highly detrimental, superinfection.

Flexible care protects against superinfection

Although ants with low-level infections are more susceptible to superinfections, the researchers show that this altered disease susceptibility affects how ants care for their infectious nest mates. They continue to perform care, but alter how they do so to decrease their risk of contracting a second infection. This risk avoidance is flexible and depends on the current immune status of the ant. If an ant is protected against a pathogen because it is currently immunized, it grooms the infected nestmate more than non-immunized ants. “This close contact means that the caring ant is exposed to a large number of fungal spores from the infectious nest mates, but it is less susceptible to them because of previous immune stimulation,” explains Sylvia Cremer.

The situation is different when the ant encounters a nest mate carrying a pathogen that the caring ant is susceptible to. If the ant has developed a susceptibility to pathogen B due to a previous infection with pathogen A, then it sprays the contaminated nestmate carrying pathogen B with formic acid to neutralize the pathogen. This avoids the need for grooming and the close contact that comes with it, preventing pathogen transmission and protecting the caring ant from superinfection.

“This risk-averse care improves and maintains the health of the caring animals and thus of the whole colony. In humans, nursing staff and doctors also pay attention to their immune status, for example by vaccinating before entering a dangerous zone. Importantly, ants are capable of this adjustment without the need for vaccination records that humans typically rely on” explains Sylvia Cremer.

Matthias Konrad and Christopher Pull are the first authors of the study. Matthias Konrad was a PhD student supervised by Sylvia Cremer from 2009 to 2014, and joined IST Austria in 2010 as one of the first PhD students, and stayed for one year after his PhD as a postdoc in the Cremer group. Christopher Pull was a PhD student in the group of Sylvia Cremer at IST Austria from 2012 to 2017, and is now a postdoc at the Royal Holloway University, London. Sylvia Cremer studies the social immune system in ants with the aim of finding out more about epidemiology and disease dynamics in societies.

About IST Austria – www.ist.ac.at

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

Original article:
Matthias Konrad, Christopher D. Pull et al: "Ants avoid superinfections by performing risk-adjusted sanitary care"
http://www.pnas.org/content/early/2018/02/16/1713501115

Weitere Informationen:

http://www.pnas.org/content/early/2018/02/16/1713501115 Link to PNAS article
http://ist.ac.at/research-groups-pages/cremer-group/ Research group website

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Lasius neglectus ants colony fungal spores immune system infections

More articles from Life Sciences:

nachricht Structual color barcode micromotors for multiplex biosensing
21.01.2020 | Science China Press

nachricht Cyanobacteria in water and on land identified as source of methane
21.01.2020 | Forschungsverbund Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>