Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Genius of a Disorderly Enzyme

28.06.2011
USC Dornsife researchers uncover how the inefficiency of activation-induced deoxycytidine deaminase is good for your immune system.

Why is antibody diversity important? Think about it like this, said Myron Goodman: “Why don’t you die when I sneeze? It’s because you have a powerful immune system. And the way to get a decent immune system is for your body to have a way to respond to insults it has never seen before.”

Random patterns of deamination by the enzyme activation-induced deoxycytidine deaminase (AID) are the key to generating antibody diversity, a crucial component to a healthy immune system, according to a new study by USC Dornsife researchers published in The Journal of Biological Chemistry.

Having variation in the types of antibodies produced by your body gives it a fighting chance to respond to those “insults.” Antibodies protect against invasion by antigens such as bacteria or viruses by locating them in the body and neutralizing them. To do that, antibodies must bind to antigens. The more variation in the types of antibodies produced by the body, the more likely they will be able to bind to and fight off antigens, which come in many forms.

To create antibody diversity, mutations must occur in the variable region of immunoglobulin genes, the region where antibodies bind to invaders. Generating those mutations has to be a really random process according to Goodman, professor of biological sciences and chemistry in USC Dornsife. This is where AID steps in.

Goodman and his colleagues monitored the actions of AID as it scanned single-stranded DNA or transcribed double-stranded DNA. The enzyme essentially moves back and forth along the DNA strand and sporadically deaminates, or converts, cytosine to uracil triggering a mutation in tri-nucleotide motifs – sequences comprising three bases – found along the DNA.

Unlike most enzymes that are exquisitely efficient in targeting favored motifs, they found that AID was extremely inefficient. AID initiated chemical reactions in favored motifs only about 3 percent of the time. By mutating the motifs so haphazardly, the researchers suggest that AID produces antibody diversity.

The study also sheds light on a little-studied group of enzymes. Enzymes like AID that scan single-stranded DNA have been studied far less extensively than enzymes that scan double-stranded DNA.

“This is the first really clear picture of what AID is doing during the scanning process,” Goodman said.

To identify and describe AID’s complex process during scanning, the team used a genetic assay to measure the distribution of AID-induced mutations on individual DNA molecules and then analyzed the mutational data computationally using a random walk model, developed for the study by USC Dornsife researcher Peter Calabrese. By combining the genetic and computational analyses, they were able to calculate the distribution of mutations that occurred with a remarkable fit to their experimental data. The fit entailed matching theory to experiment for the patterns of closely spaced mutations and separately for the distances between mutated and non-mutated target motifs.

Their paper, “An Analysis of a Single-stranded DNA Scanning Process in which AID Deaminates C to U Haphazardly and Inefficiently to Ensure Mutational Diversity” published online May 12, was selected by The Journal of Biological Chemistry as a “Paper of the Week” to appear in the July 15 print issue. The distinction is bestowed by the publication’s editorial board members and associate editors to papers that represent the top 1 percent of papers reviewed in terms of significance and overall importance.

Authors on the paper are from USC Dornsife and include Phuong Pham, assistant professor (research) of biological sciences; Calabrese, assistant professor (research) of biological sciences; Goodman, professor of biological sciences and chemistry; and Soo Jung Park, research assistant. The National Institutes of Health funded the study.

Michelle Salzman | EurekAlert!
Further information:
http://www.usc.edu
http://dornsife.usc.edu/news/stories/972/the-genius-of-a-disorderly-enzyme

More articles from Life Sciences:

nachricht Hygiene at your fingertips with the new CleanHand Network
25.09.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Scientists discovered 20 new gnat species in Brazil
24.09.2018 | Estonian Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>