Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically Engineered Bacteria Prevent Mosquitoes From Transmitting Malaria

17.07.2012
Researchers at the Johns Hopkins Malaria Research Institute have genetically modified a bacterium commonly found in the mosquito’s midgut and found that the parasite that causes malaria in people does not survive in mosquitoes carrying the modified bacterium.

The bacterium, Pantoea agglomerans, was modified to secrete proteins toxic to the malaria parasite, but the toxins do not harm the mosquito or humans. According to a study published by PNAS, the modified bacteria were 98 percent effective in reducing the malaria parasite burden in mosquitoes.


Johns Hopkins Malaria Research Institute
Genetically engineered bacteria glow fluorescent green inside mosquito.

“In the past, we worked to genetically modify the mosquito to resist malaria, but genetic modification of bacteria is a simpler approach,” said Marcelo Jacobs-Lorena, PhD, senior author of the study and a professor with Johns Hopkins Bloomberg School of Public Health. “The ultimate goal is to completely prevent the mosquito from spreading the malaria parasite to people.”

With the study, Jacobs-Lorena and his colleagues found that the engineered P. agglomerans strains inhibited development of the deadliest human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98 percent within the mosquito. The proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84 percent.

“We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria,” said Jacobs-Lorena.

Malaria kills more than 800,000 people worldwide each year. Many are children.

The authors of “Fighting malaria with engineered symbiotic bacteria from vector mosquitoes” are Sibao Wang, Anil K. Ghosh, Nicholas Bongio, Kevin A. Stebbings, David J. Lampe and Marcelo Jacobs-Lorena.

The research was supported by National Institute of Allergy and Infectious Diseases, the Bill & Melinda Gates Foundation, the Johns Hopkins Malaria Research Institute and the Bloomberg Family Foundation.

Follow the Johns Hopkins Bloomberg School of Public Health on Facebook at http://www.facebook.com/JohnsHopkinsSPH and Twitter at http://www.twitter.com/JohnsHopkinsSPH.

Tim Parsons
410-955-7619
tmparson@jhsph.edu

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>