Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic risk and stressful early infancy join to increase risk for schizophrenia

27.03.2012
Human genome and mouse studies identify new precise genetic links

Working with genetically engineered mice and the genomes of thousands of people with schizophrenia, researchers at Johns Hopkins say they now better understand how both nature and nurture can affect one's risks for schizophrenia and abnormal brain development in general.

The researchers reported in the March 2 issue of Cell that defects in a schizophrenia-risk genes and environmental stress right after birth together can lead to abnormal brain development and raise the likelihood of developing schizophrenia by nearly one and half times.

"Our study suggests that if people have a single genetic risk factor alone or a traumatic environment in very early childhood alone, they may not develop mental disorders like schizophrenia," says Guo-li Ming, M.D., Ph.D., professor of neurology and member of the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. "But the findings also suggest that someone who carries the genetic risk factor and experiences certain kinds of stress early in life may be more likely to develop the disease."

Pinpointing the cause or causes of schizophrenia has been notoriously difficult, owing to the likely interplay of multiple genes and environmental triggers, Ming says. Searching for clues at the molecular level, the Johns Hopkins team focused on the interaction of two factors long implicated in the disease: Disrupted-in-Schizophrenia 1 (DISC1) protein, which is important for brain development, and GABA, a brain chemical needed for normal brain function.

To find how these factors impact brain development and disease susceptibility, the researchers first engineered mice to have reduced levels of DISC1 protein in one type of neuron in the hippocampus, a region of the brain involved in learning, memory and mood regulation. Through a microscope, they saw that newborn mouse brain cells with reduced levels of DISC1 protein had similar sized and shaped neurons as those from mice with normal levels of DISC1 protein. To change the function of the chemical messenger GABA, the researchers engineered the same neurons in mice to have more effective GABA. Those brain cells looked much different than normal neurons, with longer appendages or projections. Newborn mice engineered with both the more effective GABA and reduced levels of DISC1 showed the longest projections, suggesting, Ming said, that defects in both DISC1 and GABA together could change the physiology of developing neurons for the worse.

Meanwhile, other researchers at University of Calgary and at the National Institute of Physiological Sciences in Japan had shown in newborn mice that changes in environment and routine stress can impede GABA from working properly during development. In the next set of experiments, the investigators paired reducing DISC1 levels and stress in mice to see if it could also lead to developmental defects. To stress the mice, the team separated newborns from their mothers for three hours a day for ten days, then examined neurons from the stressed newborns and saw no differences in their size, shape and organization compared with unstressed mice. But when they similarly stressed newborn mice with reduced DISC1 levels, the neurons they saw were larger, more disorganized and had more projections than the unstressed mouse neurons. The projections, in fact, went to the wrong places in the brain.

Next, to see if their results in mice correlated to suspected human schizophrenia risk factors, the researchers compared the genetic sequences of 2,961 schizophrenia patients and healthy people from Scotland, Germany and the United States. Specifically, they determined if specific variations of DNA letters found in two genes, DISC1 and a gene for another protein, NKCC1, which controls the effect of GABA, were more likely to be found in schizophrenia patients than in healthy individuals. They paired 36 DNA "letter" changes in DISC1 and two DNA letter variations in NKCC1 — one DNA letter change per gene — in all possible combinations. Results showed that if a person's genome contained one specific combination of single DNA letter changes, then that person is 1.4 times more likely than people without these DNA changes to develop schizophrenia. Having these single DNA letter changes in either one of these genes alone did not increase risk.

"Now that we have identified the precise genetic risks, we can rationally search for drugs that correct these defects," says Hongjun Song, Ph.D., co-author, professor of neurology and director of the Stem Cell Program at the Institute for Cell Engineering.

Other authors of the paper from Johns Hopkins are Ju Young Kim, Cindy Y. Liu, Fengyu Zhang, Xin Duan, Zhexing Wen, Juan Song, Kimberly Christian and Daniel R. Weinberger. Emer Feighery, Bai Lu and Joseph H. Callicott from the National Institute of Mental Health, Dan Rujescu of Ludwig-Maximilians-University, and David St Clair of the University of Aberdeen Royal Cornhill Hospital are additional authors.

The study was funded by the National Institutes of Health, the Maryland Stem Cell Research Foundation, the Brain and Behavior Research Foundation and the International Mental Health Research Organization.

Related Stories: Schizophrenia: Small Genetic Changes Pose Risk For Disease: http://www.hopkinsmedicine.org/news/media/releases/schizophrenia_small_genetic_changes_pose_risk_for_disease

Johns Hopkins Team Creates Stem Cells From Schizophrenia Patients: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_team_creates_stem_cells_from_schizophrenia_patients

New "Schizophrenia Gene" Prompts Researchers To Test Potential Drug Target: http://www.hopkinsmedicine.org/news/media/releases/new_schizophrenia_gene_prompts_researchers_to_test_potential_drug_target

Normal Role for Schizophrenia Risk Gene Identified: http://www.hopkinsmedicine.org/news/media/releases/Normal_Role_for_Schizophrenia_Risk_Gene_Identified

On the Web: Hongjun Song: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/hongjun_song.html

Guo-li Ming: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/guo_ming.html

Institute for Cell Engineering: http://www.hopkinsmedicine.org/institute_cell_engineering/

Johns Hopkins Medicine
Media Relations and Public Affairs
Media Contacts:
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

nachricht Atopic dermatitis: elevated salt concentrations in affected skin
21.02.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A landscape of mammalian development

21.02.2019 | Life Sciences

Surprising findings on forest fires

21.02.2019 | Earth Sciences

Atopic dermatitis: elevated salt concentrations in affected skin

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>