Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic regulation of metabolomic biomarkers – paths to cardiovascular diseases and type 2 diabetes

30.01.2012
In a study to the genetic variance of human metabolism, researchers have identified thirty one regions of the genome that were associated with levels of circulating metabolites, i.e., small molecules that take part in various chemical reactions of human body.

Many of the studied metabolites are biomarkers for cardiovascular disease or related disorders, thus the loci uncovered may provide valuable insight into the biological processes leading to common diseases.

Laboratory tests used in the clinic typically monitor one or few circulating metabolites. The researchers at the Institute for Molecular Medicine Finland (FIMM) used a high throughput method called nuclear magnetic resonance (NMR) that can measure more than hundred different metabolites in one assay. This provides a much more in-depth picture of circulating metabolic compounds.

"Using this extensive analysis in thousands of people, we could identify a large number of genetic loci regulating the level of compounds circulating in the blood stream", says Dr. Samuli Ripatti, the leader of the study.

The team assayed 117 detailed metabolic markers, including lipoprotein subclasses, amino acids and lipids, and conducted the largest genome-wide association analysis of this type, in terms of study sample size of 8330 individuals from six Finnish population-based cohorts and 7.7 million genomic markers studied. They revealed, in total, 31 genetic regions associated with the blood levels of the metabolites.

Eleven of the loci had not been previously shown to be associated with any metabolic measures.

Among the findings were two new loci affecting serum cholesterol subclass measures, well-established risk markers for cardiovascular disease, and five new loci affecting levels of amino acids recently discovered to be potential biomarkers for type 2 diabetes. The discovered variants have significant effects on the metabolite levels, the effect sizes being in general considerably larger than the known common variants for complex disease have.

Also, using Finnish twin pair samples, the researchers indicated that the metabolite levels show a high degree of heritability. "This result suggests that the studied metabolites are describing better the underlying biology than the routinely used laboratory tests. Therefore, the study provides further support for the use of detailed data on multitude of metabolites in genetic studies to provide novel biological insights and to help in elucidating the processes leading to common diseases", Dr. Ripatti says.

Dr. Samuli Ripatti is a FIMM-EMBL Group Leader at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland (http://www.fimm.fi) and a Honorary Faculty Member at the Wellcome Trust Sanger Institute, UK (http://www.sanger.ac.uk)

The Institute for Molecular Medicine Finland FIMM is an international research institute focusing on building a bridge from discovery to medical applications. FIMM investigates molecular mechanisms of disease using genomics and medical systems biology in order to promote human health. FIMM is a multi-disciplinary institute combining high-quality science with unique research cohorts and patient materials, and state-of-the-art technologies. Website http://www.fimm.fi

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. Website http://www.sanger.ac.uk/

Dr. Samuli Ripatti | EurekAlert!
Further information:
http://www.fimm.fi
http://www.sanger.ac.uk/

More articles from Life Sciences:

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

nachricht Stress testing 'coral in a box'
09.07.2020 | University of Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>