Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Adaptations Key to Microbe's Survival in Challenging Environment

12.02.2009
Genetic adaptations made by bacterium living in one of the world's most extreme environments could help us understand how life evolved.

The genome of a marine bacterium living 2,500 meters below the ocean's surface is providing clues to how life adapts in extreme thermal and chemical gradients, according to an article published Feb. 6 in the journal PLoS Genetics, an open-access publication published by the Public Library of Science.

The research focused on the bacterium Nautilia profundicola, a microbe that survives near deep-sea hydrothermal vents. Microorganisms that thrive at these geysers on the sea floor must adapt to fluctuations in temperature and oxygen levels, ranging from the hot, sulfide- and heavy metal-laden plume at the vents' outlets to cold seawater in the surrounding region.

The study combined genome analysis with physiological and ecological observations to investigate the importance of one gene in N. profundicola. That gene, called rgy, allows the bacterium to manufacture a protein called reverse gyrase when it encounters extremely hot fluids from the Earth's interior.

Previous studies found the gene only in microorganisms growing in temperatures greater than 80°C, but N. profundicola thrives best at much lower temperatures.

"The gene's presence in N. profundicola suggests that it might play a role in the bacterium's ability to survive rapid and frequent temperature fluctuations in its environment," said Assistant Professor of Marine Biosciences Barbara Campbell, the study's lead scientist.

Additional University of Delaware contributors were Professor of Marine Biosciences Stephen Craig Cary, Assistant Professor of Marine Biosciences Thomas Hanson, and Julie Smith, marine biosciences doctoral student. Also collaborating on the project were researchers from the Davis and Riverside campuses of the University of California; the University of Louisville; the University of Waikato in Hamilton, New Zealand; and the J. Craig Venter Institute in Rockville, Md.

The researchers also uncovered further adaptations to the vent environment, including genes necessary for growth and sensing environmental conditions, and a new route for nitrate assimilation related to how other bacteria use ammonia as an energy source. Photosynthesis cannot occur in the hydrothermal vents' dark environment, where hot, toxic fluids oozing from below the seafloor combine with cold seawater at very high pressures.

These results help to explain how microbes survive near the vents, where conditions are thought to resemble those found on early Earth. Nautilia profundicola contains all the genes necessary for life in conditions widely believed to mimic those in our planet's early biosphere and could aid in understanding of how life evolved.

"It will be an important model system," Campbell said, "for understanding early microbial life on Earth."

Elizabeth Boyle | Newswise Science News
Further information:
http://www.udel.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>