Gene signature for cancer stem cells may provide drug targets

“We have found that gene expression patterns in a subset of these resistant cancer cells differ from those associated with the bulk of the epithelial cells in the tumor. These patterns resemble expression patterns more closely associated with cells with a mesenchymal (a form of connective tissue) phenotype (or appearance),” said Dr. Jenny Chang (http://www.bcm.edu/breastcenter/?PMID=10728), medical director of the Sue and Lester Smith Breast Center (http://www.bcm.edu/cancercenter/) at BCM and a professor of medicine. Chang is a senior author of the paper along with Drs. Michael Lewis and Jeffrey M. Rosen, both of BCM and the Dan L. Duncan Cancer Center (http://www.bcm.edu/cancercenter/) as well as the Breast Center.

In a previous paper, the authors showed that after patients received conventional chemotherapy, the remaining tumor contained a higher percentage of tumor-initiating cells, also known as breast cancer stem cells. These remaining tumor-initiating cells were therefore largely resistant to conventional treatments.

They found that gene expression patterns in these chemoresistant cells represented a tumor-initiating gene signature, which was not only more easily detectable in a newly-defined breast cancer subtype called “claudin-low”, but also enriched in human breast tumors after they had been treated with anti-cancer drugs that target the signals of hormones, said Chang. They also found that genes associated with the mesenchymal cell phenotype were increased in breast tumors after hormone treatment.

“This study supports a growing body of evidence that there is a particular subpopulation of cells in breast cancer that may be responsible for disease recurrence, resistance to treatment, and perhaps metastasis (cancer spread),” said Chang.

In the future, she said, the group will be looking at ways to use the gene signature they have identified to develop drugs that can combine with conventional therapy to eradicate all populations of cells within tumors.

Others who took part in this research include Chad J. Creighton, Xiaoxian Li, Melissa Landis, Helen Wong, Angel Rodriguez, Jason I. Herschkowitz, Xiamoei Zhang, Anne Pavlick, M. Carolina Gutierrez, and Susan G. Hilsenbeck, all of the Dan L. Duncan Cancer Center at BCM; J. Michael Dixon, Lorna Renshaw, Alexey A. Larionov and Dana Faratian of Western General Hospital in Edinburgh, UK;Veronique M. Neumeister, Ashley Sjohund, David L. Rimm and Xiaping He, all of Yale University School of Medicine in New Haven, CT; Cheng Fan and Charles M. Perou, both of Unversity of North Carolina at Chapel Hill.

Funding for this study came from the Breast Cancer Research Fundation, the Helis Foundation, the National Cancer Institute Breast Cancer Special Program of Research Excellence, the National Cancer Institute, the Breakthrough Research Unit in Edinburgh, Cancer Research UK, the National Institutes of Health, Glaxo Smith Kline and the U.S. Army Medical Research and Materiel Command.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab or www.bcm.edu/news.

Media Contact

Glenna Picton EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors