Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutations associated with autistic behavior are also responsible for disturbances in the gastrointestinal tract

11.11.2019

Human geneticists from Heidelberg discovered that behavioral defects in autism and functional problems of the esophagus and gastrointestinal tract have common genetic causes / Publication in PNAS

Individuals with autism often also show disturbances of the gastrointestinal tract. Scientists from Heidelberg, Würzburg, and Ulm have shown for the first time that the behavioral features and digestive problems in autism might be directly related.


As reported in the scientific journal PNAS, they provided evidence that gene mutations in Foxp1 affect not only the brain but also gastrointestinal function using a mouse model.

Congenital defects in Foxp1 can therefore cause typical autistic phenotypes such as social deficits, stereotypic behavior, and reduced cognitive skills, but can also impair bowel activity and esophagus function.

“If this discovery can be translated to human, it will have an immediate effect on the consultation of patients and their relatives,” says senior author Prof. Dr. Gudrun Rappold, Director of the Department of Human Molecular Genetics at the Institute of Human Genetics of Heidelberg University Hospital.

“Restricted esophagus- and bowel function may be treated with an adapted diet and medication. But above all, it is now clear that gastrointestinal problems are neither caused by patients’ medication alone nor by their deviant eating habits, as frequently assumed.”

Digestive problems occur with above-average frequency in individuals with autism spectrum disorders. However, these complaints have not been assessed to date. Furthermore, some affected individuals have only limited communicative or intellectual skills and their ability to report on digestive or swallowing problems is limited.

Many patients with the so-called FOXP1 syndrome, for instance, are diagnosed with gastrointestinal problems. Prof. Dr. Gudrun Rappold at the Institute of Human Genetics and Prof. Dr. Andreas Friebe at the Physiological Institute of Würzburg University and their teams have systematically examined these interrelationships in mice bearing the same genetic defect as humans.

The majority of genes associated with autism are active in the brain and gastrointestinal tract

These mice showed an abnormal feeding behavior and less food and water intake compared with those without this genetic alteration. The colon and esophagus had thinner muscle layers. Disturbed sphincter function at the gastric entrance reduced opening during swallowing (achalasia).

This disrupts the passage of food, which can damage and enlarge the esophagus. Additionally, passage of food through the intestine was significantly slower. Dr. Henning Fröhlich, first author of the study, concludes that “achalasia combined with changes in intestinal peristalsis are most likely the cause of swallowing problems and constipation that frequently occur in patients with FOXP1 syndrome”.

The Foxp1 gene is a blueprint for a protein that regulates the functional activity of other genes. The scientists found out that some genes that had already been identified in the brain are also regulated by Foxp1 in the esophagus.

“In fact, the vast majority of genes directly related to autism are active in both the brain and gastrointestinal tract. Therefore, we assume that defects in these genes interfere with the function of both the brain and the gut. This remains to be clarified”, concludes Prof. Rappold.

Prof. Niesler, who works on the genetics of neurogastroenterologic disorders, adds “Understanding the role of these genes during the development of bowel dysfunctions in autism can also help us clarify the genetic causes of functional gastrointestinal diseases in people, in which the communication between the gut and the brain is disturbed”.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gudrun Rappold
Director Department of Human Molecular Genetics
Institute of Human Genetics
Heidelberg University Hospital
E-Mail: gudrun.rappold@med.uni-heidelberg.de

Originalpublikation:

Fröhlich H, et al. (2019) Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/- mice. Proceedings of the National Academy of Sciences of the United States of America.

Julia Bird | idw - Informationsdienst Wissenschaft
Further information:
http://www.klinikum.uni-heidelberg.de/

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>