Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutations associated with autistic behavior are also responsible for disturbances in the gastrointestinal tract

11.11.2019

Human geneticists from Heidelberg discovered that behavioral defects in autism and functional problems of the esophagus and gastrointestinal tract have common genetic causes / Publication in PNAS

Individuals with autism often also show disturbances of the gastrointestinal tract. Scientists from Heidelberg, Würzburg, and Ulm have shown for the first time that the behavioral features and digestive problems in autism might be directly related.


As reported in the scientific journal PNAS, they provided evidence that gene mutations in Foxp1 affect not only the brain but also gastrointestinal function using a mouse model.

Congenital defects in Foxp1 can therefore cause typical autistic phenotypes such as social deficits, stereotypic behavior, and reduced cognitive skills, but can also impair bowel activity and esophagus function.

“If this discovery can be translated to human, it will have an immediate effect on the consultation of patients and their relatives,” says senior author Prof. Dr. Gudrun Rappold, Director of the Department of Human Molecular Genetics at the Institute of Human Genetics of Heidelberg University Hospital.

“Restricted esophagus- and bowel function may be treated with an adapted diet and medication. But above all, it is now clear that gastrointestinal problems are neither caused by patients’ medication alone nor by their deviant eating habits, as frequently assumed.”

Digestive problems occur with above-average frequency in individuals with autism spectrum disorders. However, these complaints have not been assessed to date. Furthermore, some affected individuals have only limited communicative or intellectual skills and their ability to report on digestive or swallowing problems is limited.

Many patients with the so-called FOXP1 syndrome, for instance, are diagnosed with gastrointestinal problems. Prof. Dr. Gudrun Rappold at the Institute of Human Genetics and Prof. Dr. Andreas Friebe at the Physiological Institute of Würzburg University and their teams have systematically examined these interrelationships in mice bearing the same genetic defect as humans.

The majority of genes associated with autism are active in the brain and gastrointestinal tract

These mice showed an abnormal feeding behavior and less food and water intake compared with those without this genetic alteration. The colon and esophagus had thinner muscle layers. Disturbed sphincter function at the gastric entrance reduced opening during swallowing (achalasia).

This disrupts the passage of food, which can damage and enlarge the esophagus. Additionally, passage of food through the intestine was significantly slower. Dr. Henning Fröhlich, first author of the study, concludes that “achalasia combined with changes in intestinal peristalsis are most likely the cause of swallowing problems and constipation that frequently occur in patients with FOXP1 syndrome”.

The Foxp1 gene is a blueprint for a protein that regulates the functional activity of other genes. The scientists found out that some genes that had already been identified in the brain are also regulated by Foxp1 in the esophagus.

“In fact, the vast majority of genes directly related to autism are active in both the brain and gastrointestinal tract. Therefore, we assume that defects in these genes interfere with the function of both the brain and the gut. This remains to be clarified”, concludes Prof. Rappold.

Prof. Niesler, who works on the genetics of neurogastroenterologic disorders, adds “Understanding the role of these genes during the development of bowel dysfunctions in autism can also help us clarify the genetic causes of functional gastrointestinal diseases in people, in which the communication between the gut and the brain is disturbed”.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gudrun Rappold
Director Department of Human Molecular Genetics
Institute of Human Genetics
Heidelberg University Hospital
E-Mail: gudrun.rappold@med.uni-heidelberg.de

Originalpublikation:

Fröhlich H, et al. (2019) Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/- mice. Proceedings of the National Academy of Sciences of the United States of America.

Julia Bird | idw - Informationsdienst Wissenschaft
Further information:
http://www.klinikum.uni-heidelberg.de/

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>