Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutations associated with autistic behavior are also responsible for disturbances in the gastrointestinal tract

11.11.2019

Human geneticists from Heidelberg discovered that behavioral defects in autism and functional problems of the esophagus and gastrointestinal tract have common genetic causes / Publication in PNAS

Individuals with autism often also show disturbances of the gastrointestinal tract. Scientists from Heidelberg, Würzburg, and Ulm have shown for the first time that the behavioral features and digestive problems in autism might be directly related.


As reported in the scientific journal PNAS, they provided evidence that gene mutations in Foxp1 affect not only the brain but also gastrointestinal function using a mouse model.

Congenital defects in Foxp1 can therefore cause typical autistic phenotypes such as social deficits, stereotypic behavior, and reduced cognitive skills, but can also impair bowel activity and esophagus function.

“If this discovery can be translated to human, it will have an immediate effect on the consultation of patients and their relatives,” says senior author Prof. Dr. Gudrun Rappold, Director of the Department of Human Molecular Genetics at the Institute of Human Genetics of Heidelberg University Hospital.

“Restricted esophagus- and bowel function may be treated with an adapted diet and medication. But above all, it is now clear that gastrointestinal problems are neither caused by patients’ medication alone nor by their deviant eating habits, as frequently assumed.”

Digestive problems occur with above-average frequency in individuals with autism spectrum disorders. However, these complaints have not been assessed to date. Furthermore, some affected individuals have only limited communicative or intellectual skills and their ability to report on digestive or swallowing problems is limited.

Many patients with the so-called FOXP1 syndrome, for instance, are diagnosed with gastrointestinal problems. Prof. Dr. Gudrun Rappold at the Institute of Human Genetics and Prof. Dr. Andreas Friebe at the Physiological Institute of Würzburg University and their teams have systematically examined these interrelationships in mice bearing the same genetic defect as humans.

The majority of genes associated with autism are active in the brain and gastrointestinal tract

These mice showed an abnormal feeding behavior and less food and water intake compared with those without this genetic alteration. The colon and esophagus had thinner muscle layers. Disturbed sphincter function at the gastric entrance reduced opening during swallowing (achalasia).

This disrupts the passage of food, which can damage and enlarge the esophagus. Additionally, passage of food through the intestine was significantly slower. Dr. Henning Fröhlich, first author of the study, concludes that “achalasia combined with changes in intestinal peristalsis are most likely the cause of swallowing problems and constipation that frequently occur in patients with FOXP1 syndrome”.

The Foxp1 gene is a blueprint for a protein that regulates the functional activity of other genes. The scientists found out that some genes that had already been identified in the brain are also regulated by Foxp1 in the esophagus.

“In fact, the vast majority of genes directly related to autism are active in both the brain and gastrointestinal tract. Therefore, we assume that defects in these genes interfere with the function of both the brain and the gut. This remains to be clarified”, concludes Prof. Rappold.

Prof. Niesler, who works on the genetics of neurogastroenterologic disorders, adds “Understanding the role of these genes during the development of bowel dysfunctions in autism can also help us clarify the genetic causes of functional gastrointestinal diseases in people, in which the communication between the gut and the brain is disturbed”.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gudrun Rappold
Director Department of Human Molecular Genetics
Institute of Human Genetics
Heidelberg University Hospital
E-Mail: gudrun.rappold@med.uni-heidelberg.de

Originalpublikation:

Fröhlich H, et al. (2019) Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/- mice. Proceedings of the National Academy of Sciences of the United States of America.

Julia Bird | idw - Informationsdienst Wissenschaft
Further information:
http://www.klinikum.uni-heidelberg.de/

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>