Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation found for aggressive form of pancreatic cancer

26.05.2014

Discovery may prove useful in future diagnoses and in developing new therapies

Researchers at the University of California, San Diego School of Medicine have identified a mutated gene common to adenosquamous carcinoma (ASC) tumors – the first known unique molecular signature for this rare, but particularly virulent, form of pancreatic cancer.

The findings are published in the May 25 advance online issue of Nature Medicine.

Pancreatic cancer is the fourth leading cause of cancer-related death in the United States, with roughly 45,220 new cases diagnosed and more than 38,400 deaths annually. Both numbers are rising. ASC cases are infrequent, but typically have a worse prognosis than more common types of pancreatic cancer.

... more about:
»ASC »Medicine »RNA »aggressive »found »mutations »pancreatic »proteins »tumors

"There has been little progress in understanding pancreatic ASC since these aggressive tumors were first described more than a century ago," said co-senior author Miles F. Wilkinson, PhD, professor in the Department of Reproductive Medicine and a member of the UC San Diego Institute for Genomic Medicine. "One problem has been identifying mutations unique to this class of tumors."

In their paper, Wilkinson, co-senior author Yanjun Lu, PhD, of Tongji University in China, and colleagues report that ASC pancreatic tumors have somatic or non-heritable mutations in the UPF1 gene, which is involved in a highly conserved RNA degradation pathway called nonsense-mediated RNA decay or NMD. It is the first known example of genetic alterations in an NMD gene in human tumors.

NMD has two major roles. First, it is a quality control mechanism used by cells to eliminate faulty messenger RNA (mRNA) – molecules that help transcribe genetic information into the construction of proteins essential to life. Second, it degrades a specific group of normal mRNAs, including those encoding proteins promoting cell growth, cell migration and cell survival. Loss of NMD in these tumors may "release the brakes on these molecules, and thereby driving tumor growth and spread," said Wilkinson.

###

Co-first author Rachid Karam, MD, PhD, a postdoctoral fellow in Wilkinson's laboratory said the findings will create new opportunities for the development of novel diagnostic approaches and therapeutic strategies for targeting pancreatic cancer. "Currently, pancreatic cancer is detected far too late in most cases for effective treatment, and therapeutic options are limited," Karam said.

Co-authors include Chen Liu, Fang Su, GuoTong Xu, LiXia Lu, ChongRen Wang, MeiYi Song, JingPing Zhu, YiRan Wang and YiFan Zhao, Tongji University School of Medicine; YingQi Zhou and Gang Li, Second Military Medical University; Yuan Ji, Fudan University; Wai Chin Foo, Mingxin Zuo and Milind Javie, University of Texas MD Anderson Cancer Center.

Funding for this research came, in part, from The National Key Basic Research Program of China, the National Natural Science Foundation of China and the National Institutes of Health.

Scott LaFee | Eurek Alert!

Further reports about: ASC Medicine RNA aggressive found mutations pancreatic proteins tumors

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>