Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene is first linked to herpes-related cold sores

30.11.2011
A team of researchers from the University of Utah and the University of Massachusetts has identified the first gene associated with frequent herpes-related cold sores.

The findings were published in the Dec. 1, 2011, issue of the Journal of Infectious Diseases.

Herpes simplex labialis (HSL) is an infection caused by herpes simplex virus type 1 (HSV-1) that affects more than 70 percent of the U.S. population. Once HSV-1 has infected the body, it is never removed by the immune system. Instead, it is transported to nerve cell bodies, where it lies dormant until it is reactivated. The most common visible symptom of HSV-1 reactivation is a cold sore on or around the mouth. Although a majority people are infected by HSV-1, the frequency of cold sore outbreaks is extremely variable and the causes of reactivation are uncertain.

"Researchers believe that three factors contribute to HSV-1 reactivation – the virus itself, exposure to environmental factors, and genetic susceptibility," says John D. Kriesel, M.D., research associate professor of infectious diseases at the University of Utah School of Medicine and first author on the study. "The goal of our investigation was to define genes linked to cold sore frequency."

Kriesel and his colleagues previously had identified a region of chromosome 21 containing six genes significantly linked to HSL disease using DNA collected from 43 large families to map the human genome. In the current study, Kriesel and his colleagues performed intensive analysis of this chromosome region using single nucleotide polymorphism (SNP) genotyping, a test which identifies differences in genetic make-up between individuals.

"Using SNP genotyping, we were able to identify 45 DNA sequence variations among 618 study participants, 355 of whom were known to be infected with HSV-1," says Kriesel. "We then used two methods called linkage analysis and transmission disequilibrium testing to determine if there was a genetic association between particular DNA sequence variations and the likelihood of having frequent cold sore outbreaks."

Kriesel and his colleagues discovered that an obscure gene called C21orf91 was associated with susceptibility to HSL. They identified five major variations of C21orf91, two of which seemed to protect against HSV-1 reactivation and two of which seemed to increase the likelihood of having frequent cold sore outbreaks.

"There is no cure for HSV-1 and, at this time, there is no way for us to predict or prevent cold sore outbreaks," says Kriesel. "The C21orf91 gene seems to play a role in cold sore susceptibility, and if this data is confirmed among a larger, unrelated population, this discovery could have important implications for the development of drugs that affect cold sore frequency."

Kriesel's University of Utah collaborators include Maurine R. Hobbs, Ph.D., research assistant professor of internal medicine and adjunct assistant professor of human genetics, and Mark F. Leppert, Ph.D., distinguished professor and former chair of human genetics.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>