Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How geckos cope with wet feet

09.08.2012
Geckos are remarkable little creatures, clinging to almost any dry surface, and Alyssa Stark, from the University of Akron, USA, explains that they appear to be equally happy scampering through tropical rainforest canopies as they are in urban settings.

'A lot of work is done on geckos that looks at the very small adhesive structures on their toes to really understand how the system works at the most basic level', says Stark. She adds that the animals grip surfaces with microscopic hairs on the soles of their feet that make close enough contact to be attracted to the surface by the minute van der Waals forces between atoms. However, she and her colleagues Timothy Sullivan and Peter Niewiarowski were curious about how the lizards cope on surfaces in their natural habitat.

Explaining that previous studies had focused on the reptiles clinging to artificial dry surfaces, Stark says 'We know they are in tropical environments that probably have a lot of rain and it's not like the geckos fall out of the trees when it's wet'. Yet, the animals do seem to have trouble getting a grip on smooth wet surfaces, sliding down wet vertical glass after a several steps even though minute patches of the animal's adhesive structures do not slip under humid conditions on moist glass. The team decided to find out how Tokay geckos with wet feet cope on wet and dry surfaces, and publish their discovery that geckos struggle to remain attached as their feet get wetter in The Journal of Experimental Biology at http://jeb.biologists.org.

But first they had to find out how well their geckos clung onto glass with dry feet. Fitting a tiny harness around the lizard's pelvis and gently lowering the animal onto a plate of smooth glass, Stark and Sullivan allowed the animal to become well attached before connecting the harness to a tiny motor and gently pull the lizard until it came unstuck. The geckos hung on tenaciously, and only came unstuck at forces of around 20N, which is about 20 times their own body weight. 'The gecko attachment system is over-designed', says Stark.

Next, the trio sprayed the glass plate with a mist of water and retested the lizards, but this time the animals had problems holding tight: the attachment force varied each time they took a step. The droplets were interfering with the lizards' attachment mechanism, but it wasn't clear how. And when the team immersed the geckos in a bath of room temperature water with a smooth glass bottom, the animals were completely unable to anchor themselves to the smooth surface. 'The toes are superhydrophobic [water repellent]', explains Stark, who could see a silvery bubble of air around their toes, but they were unable to displace the water around their feet to make the tight van der Waals contacts that usually keep the geckos in place.

Then, the team tested the lizard's adhesive forces on the dry surface when their feet had been soaking for 90min and found that the lizards could barely hold on, detaching when they were pulled with a force roughly equalling their own weight. 'That might be the sliding behaviour that we see when the geckos climb vertically up misted glass', says Stark. So, geckos climbing on wet surfaces with damp feet are constantly on the verge of slipping and Stark adds that when the soggy lizards were faced with the misted and immersed horizontal surfaces, they slipped as soon as the rig started pulling.

Therefore geckos can walk on wet surfaces, so long as their feet are reasonably dry. However, as soon as their feet get wet, they are barely able to hang on and the team is keen to understand how long it takes geckos to recover from a drenching.

REFERENCE: Stark, A. Y., Sullivan, T. W. and Niewiarowski, P. H. (2012). The effect of surface water and wetting on gecko adhesion. J. Exp. Biol. 215, 3080-3086.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Sue Chamberlain | EurekAlert!
Further information:
http://jeb.biologists.com
http://www.biologists.com

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>