Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly sperm makes females do housework after sex

01.10.2009
The sperm of male fruit flies are coated with a chemical 'sex peptide' which inhibits the female's usual afternoon siesta and compels her into an intense period of foraging activity.

The surprise discovery was made by Professor Elwyn Isaac from the University of Leeds' Faculty of Biological Sciences when investigating the marked differences in sleeping patterns between virgin and mated females.

Both male and female fruit flies (Drosophila melanogaster) – commonly seen hovering around rotting fruit and vegetables - are active at dawn and dusk, and have a deep sleep at night. They also exhibit a marked 'resting state' during the afternoon, which Professor Isaac likens to a siesta that conserves the fly's energy and reduces damaging exposure to the sun during hot afternoons.

"However, we noted that after mating, females still slept deeply at night, but ditched the usual siesta in favour of extra foraging and searching for places to lay her eggs," he says. "This behaviour lasts for around eight days – and our research findings suggest that this change is not by choice. Females who mated with males that produced sperm without the sex peptide continued to take their siesta. So we're certain that this change of behaviour is chemically induced by the male."

"Sleep is an ancient and essential mechanism in living creatures from worms to humans, so to inhibit this for such a long period and replace it with extra activity that exposes the female to environmental hazards and danger from predators must require a powerful mechanism," he says.

The sex peptide is produced in the males' accessory glands (the equivalent of the human prostate gland) and attaches itself to the surface of the sperm's tail. Previous research studies have shown that the sex peptide encourages females to increase egg production - a mated female will lay up to 100 eggs a day compared with 1-2 eggs laid by a virgin female. It also inhibits her from mating with other males for around a week to ten days.

"It would appear that preventing sleep and inducing extra domestic-type duties to prepare for the birth of offspring in females is a further tactic used by the male to ensure successful paternity after mating," says Professor Isaac.

Professor Isaac says that the discovery sheds further light on the role of signalling molecules in the brain. "If we can work out exactly how this natural molecular switch can disrupt sleep behaviour, we may be able to apply this knowledge to neurological disorders relating to human sleep such as narcolepsy, which we think is caused by a fault in the neuropeptide signalling pathway in the brain."

Fruit flies are a good model for looking at sleep behaviour in humans as they exhibit many of the hallmarks of mammalian sleep. For example they sleep deeply at night from which they're difficult to rouse and they have a preferred sleeping posture. If kept awake through the night, they exhibit tiredness the next day; if fed caffeine, they stay awake, and they become drowsy if given antihistamines. The fruit fly's genome has also been fully mapped, so wide ranging genetic studies are possible.

Jo Kelly | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>