Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Flies on Methamphetamine Die Largely as a Result of Anorexia

01.08.2012
A new study finds that, like humans, fruit flies exposed to methamphetamine drastically reduce their food intake and increase their physical activity. The study, which tracked metabolic and behavioral changes in fruit flies on meth, indicates that starvation is a primary driver of methamphetamine-related death in the insects.
The new findings are described in The Journal of Toxicological Sciences.
The abuse of methamphetamine can have significant harmful side effects in humans. It burdens the body with toxic metabolic byproducts and weakens the heart, muscles and bones. It alters energy metabolism in the brain and kills brain cells.

Previous studies have shown that the fruit fly Drosophila melanogaster is a good model organism for studying the effects of methamphetamine on the body and brain. Researchers have found that meth exposure has similar toxicological effects in fruit flies and in humans and other mammals.

Some studies found that supplementing the fly’s diet with added glucose or other metabolic precursors slowed the damaging effects of exposure to methamphetamine, suggesting that meth has a profoundly negative effect on metabolism. Human meth users are known to crave sugary drinks, an indication that their sugar metabolism, too, is altered by methamphetamine use.

“But previous research has not spelled out exactly how methamphetamine use affects energy metabolism,” said University of Illinois entomology professor Barry Pittendrigh, who led the new study with postdoctoral researcher Kent Walters. “Either it alters the expression of metabolic genes and/or the function of proteins, or it changes behaviors related to feeding and activity.”

To test these competing hypotheses, the researchers monitored the fruit flies’ energy reserves and other byproducts of metabolism in response to meth

exposure – with and without the addition of dietary glucose. They also tracked how meth affected the flies’ feeding behavior, activity levels and respiration rates.

“We found that methamphetamine in the diet increased the flies’ locomotor activity two-fold and decreased their food consumption by 60 to 80 percent,” Walters said. Levels of triglycerides and glycogen, the two predominant energy storage molecules in animals, decreased steadily with meth exposure over a 48-hour period, suggesting that meth induced a negative caloric balance.

“This is very similar to what has been observed in humans for whom amphetamines can cause increased physical activity and decreased appetite,” Walters said.

The flies’ metabolic rate also declined in response to meth exposure, the opposite of what would be expected if metabolic changes were driving the depletion of triglycerides and glycogen.

Adding glucose to the diet slowed the rate of decline and death in meth-fed flies, Walters said.

“While methamphetamine exposure has a lot of other toxic effects that also undermine an animal’s health, we show that meth exposure leads to anorexia and the resulting caloric deficit exhausts the animal’s metabolic reserves,” he said. “This is likely a primary factor in meth-induced mortality.”

The new findings further support the usefulness of the fruit fly as a model system to study the effects of methamphetamines, Pittendrigh said.

The paper, “Methamphetamine causes anorexia in Drosophila melanogaster, exhausting metabolic reserves and contributing to mortality,” is available online: https://www.jstage.jst.go.jp/browse/jts

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Cancer cachexia: Extracellular ligand helps to prevent muscle loss
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht The genetic secret of night vision
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>