Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food profilers develop new methodological approach for food analysis: Better food quality control

30.07.2019

Scientists at the Technical University of Munich (TUM) and the Leibniz-Institute for Food Systems Biology have developed a new methodology for the simultaneous analysis of odorants and tastants. It could simplify and accelerate the quality control of food in the future.

Whether a food tastes good or not is essentially determined by the interaction of odors and tastants. A few trillionths of a gram per kilogram of food is enough to perceive some odorants. Tastants, on the other hand, we only recognize at significantly higher concentrations.


The simultaneous analysis of odorants and tastants could simplify and accelerate the quality control of food in the future.

Image: A. Dunkel / LSB / TUM


Andreas Dunkel and Christoph Hofstetter in their laboratory.

Photo: G. Olias / Leibniz-LSB / TUM

In order to guarantee consistent sensory quality, it is very important for manufacturers to know and control the characteristic odor and taste profiles of their products from the raw material to the finished product. This requires a fast but precise food analysis.

Tastants and aroma substances, however, differ greatly in their chemical and physical properties. As a result, food chemists currently use very different methods to determine the exact nature and quantity of odorants and tastants in a raw material or food.

Especially aroma analyses are very time-consuming and therefore expensive. This limits the high-throughput analysis of numerous samples.

One methodical approach for two different substance classes

Thomas Hofmann, Director of the Leibniz-Institute for Food Systems Biology and Professor of Food Chemistry and Molecular Sensory Science at the TUM, explains: "We have now developed a new, innovative methodical approach that will enable us to examine food simultaneously for both odorants and tastants in a time-saving high-throughput process. It is based on an ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS) method typically used for taste analysis.

The new and time-saving feature of the developed approach is that volatile odorous substances can now also be analyzed by means of an upstream enrichment or substance conversion step using this method, which is otherwise not used for aromatic substances.

Apple juice as a test object

"We have tested our new methodological approach using apple juice as an example. The results are very promising," says Andreas Dunkel, Senior Scientist at the Leibniz-Institute of Food Systems Biology. Together with doctoral student Christoph Hofstetter from the TUM, he was substantially involved in the development of the new approach.

According to the scientists, the new method makes it possible for the first time to analyze a large number of samples in a very short time with regard to their taste and odor giving ingredients.

Also suitable for food profiling

The researchers hope to be able to further develop the method so that it can be used by food manufacturers in the future to quickly and easily monitor the flavor of food along the entire value chain and, if necessary, optimize it.
Last but not least, the new method could also be used to stop food fraud. "Using the identified flavor profiles, it would be possible to check the origin and quality label of the manufacturers and detect food fraud," says food profiler and food chemist Andreas Dunkel.

Further information

The scientific project was carried out within the framework of the "enable" (https://www.enable-cluster.de/en/) competence cluster of nutrition research funded by the Federal Ministry of Education and Research of Germany (BMBF). Its aim is to develop new strategies that promote healthy eating behavior in society. This contributes significantly to the prevention of common diseases such as type 2 diabetes, cardiovascular diseases, certain types of cancer and obesity. This also includes well-controlled, tasty foods that support healthy eating habits.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Hofmann

Chair of Food Chemistry and Molecular Sensory Science

Leibniz-Institute for Food Systems Biology at TUM

Lise-Meitner-Str. 34, 85354 Freising

E-mail: thomas.hofmann@tum.de

Phone: +49 (8161) 71-2902

Andreas Dunkel

Leibniz-Institute for Food Systems Biology at TUM

E-mail: a.dunkel.leibniz-lsb@tum.de

Phone: +49 (8161) 71-2903
http://www.molekulare-sensorik.de/index.php?id=2&L=1
https://www.leibniz-lsb.de/en/

Originalpublikation:

Christoph Konrad Hofstetter, Andreas Dunkel and Thomas Hofmann:
Unified Flavor Quantitation: Toward High-Throughput Analysis of Key Food Odorants and Tastants by Means of Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry
J. Agric. Food Chem., July 9, 2019 - DOI: 10,1021/acs.jafc.9b03466
https://pubs.acs.org/doi/10.1021/acs.jafc.9b03466

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35607/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Biology Food Chemistry Leibniz-Institute TUM quality control

More articles from Life Sciences:

nachricht TU Bergakademie Freiberg researches virus inhibitors from the sea
27.03.2020 | Technische Universität Bergakademie Freiberg

nachricht The Venus flytrap effect: new study shows progress in immune proteins research
27.03.2020 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>