Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fluorescent proteins report electrical signals of brain cells

06.01.2010
A new fluorescent protein has illuminated complex neural networks of the hippocampus.

The protein was engineered by researchers at RIKEN to help analyze rapid electrical signals in populations of nerve cells and provides a unique window onto cellular-dynamics of neuronal webs. Further work with this protein is expected to dramatically extend the scope of research into brain function.

One of the key challenges in analyzing neural network dynamics is to monitor the activity of multiple neurons simultaneously. Voltage-sensitive fluorescent proteins (VSFP) make such analysis possible by encoding voltage sensors at the genetic level, enabling researchers to non-invasively target and visualize the activity of specific cell populations. VSFPs have, until now, suffered from interference with tissue background fluorescence and poor long-term expression in nerve cells.

A new series of red-shifted VSFPs, designed by a research team at the RIKEN Brain Science Institute, has overcome these limitations. By fusing the voltage-sensitive domain of a voltage-sensing phosphatase (Ci-VSP) to red-shifted fluorescent proteins, the researchers generated a series of VSFPs emitting different spectral colors. In a paper in the journal Chemistry & Biology, the researchers use these proteins to uncover details of the voltage-sensing mechanism in Ci-VSP, while also demonstrating the effectiveness of one variant (VSFP3.1_mOrange2) for analysis of electrical signals in hippocampal neurons.

The glimpse of the cellular-level dynamics of neuronal networks provided by VSFPs will vastly expand our understanding of information processing in the brain. By extending and clarifying the mechanisms of existing VSFPs, the new family of red-shifted proteins brings this potential one step closer to reality, enabling groundbreaking advances in understanding brain function.

Images associated with this press release are available on this link http://www.researchsea.com/html/article.php/aid/4828/cid/3/research/

new_fluorescent_proteins_report_electrical_signals_of_brain_cells.html

For more information, please contact:

Dr. Thomas Knöpfel
Laboratory for Neuronal Circuit Dynamics RIKEN Brain Science Institute
Tel: +81-(0)48-467-9740 / Fax: +81-(0)48-467-9739
Email: tknopfel@brain.riken.jp
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Breakthrough in designing a better Salmonella vaccine
25.09.2018 | University of California - Davis

nachricht Proof of Concept: Gene therapy for mitochondrial diseases
25.09.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>