Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fluorescent dyes highlight neuronal activity

26.01.2012
Researchers at the University of California, San Diego School of Medicine have created a new generation of fast-acting fluorescent dyes that optically highlight electrical activity in neuronal membranes. The work is published in this week's online Early Edition of the Proceedings of the National Academy of Sciences.

The ability to visualize these small, fast-changing voltage differences between the interior and exterior of neurons – known as transmembrane potential – is considered a powerful method for deciphering how brain cells function and interact.


These are leech neurons stained with voltage-sensitive dye. Credit: UC San Diego School of Medicine

However, current monitoring methods fall short, said the study's first author Evan W. Miller, a post-doctoral researcher in the lab of Roger Tsien, PhD, Howard Hughes Medical Institute investigator, UC San Diego professor of pharmacology, chemistry and biochemistry and 2008 Nobel Prize co-winner in chemistry for his work on green fluorescent protein.

"The most common method right now monitors the movement of calcium ions into the cell," said Miller. "It provides some broad indication, but it's an indirect measurement that misses activity we see when directly measuring voltage changes."

The new method employs dyes that penetrate only the membrane of neurons, either in in vitro cells cultured with the dye or, for this study, taken up by neurons in a living leech model. When the dyed cells are exposed to light, neuronal firing causes the dye momentarily to glow more brightly, a flash that can be captured with a high-speed camera.

"One of the tradeoffs with using voltage-sensing dyes in the past is that when they were reasonably sensitive to voltage changes, they were slow compared to the actual physiological events," said Miller. "The new dye gives big signals but is much faster and doesn't perturb the neurons. We essentially see no lag time between the optical signal and electrodes (used to double-check neuronal activity)."

The new method provides a wider view of neuronal activity, said Miller. More importantly, it makes it possible for neuroscientists to do accurate, single trial experiments. "Right now, you have to repeat experiments with cells, and then average the results, which is physiologically less relevant and meaningful."

For Tsien, the new dyes address a career-long challenge.

"These results are the first demonstration of a new mechanism to sense membrane voltage, which is particularly satisfying to me because this was the first problem I started working on as a graduate student in 1972, with little success back then," said Tsien. "Later, we devised indirect solutions such as calcium imaging or dyes that gave big but slow responses to voltage. These techniques have been very useful in other areas of biology or in drug screening, but didn't properly solve the original problem. I think we are finally on the right track, four decades later."

Funding for this research came, in part, from the Howard Hughes Medical Institute, the National Institutes of Health, including the National Institute of Neurological Disorders and Stroke and the National Institute of Biomedical Imaging and Bioengineering.

Co-authors are John Y. Lin, Department of Pharmacology, UC San Diego; E. Paxon Frady, Neurosciences Graduate Group, UC San Diego; Paul A. Steinbach, Department of Pharmacology, UC San Diego and Howard Hughes Medical Institute; William B. Kristan, Jr., Division of Biological Sciences, UC San Diego.

Researchers at the University of California, San Diego School of Medicine have created a new generation of fast-acting fluorescent dyes that optically highlight electrical activity in neuronal membranes. The work is published in this week's online Early Edition of the Proceedings of the National Academy of Sciences.

The ability to visualize these small, fast-changing voltage differences between the interior and exterior of neurons – known as transmembrane potential – is considered a powerful method for deciphering how brain cells function and interact.

However, current monitoring methods fall short, said the study's first author Evan W. Miller, a post-doctoral researcher in the lab of Roger Tsien, PhD, Howard Hughes Medical Institute investigator, UC San Diego professor of pharmacology, chemistry and biochemistry and 2008 Nobel Prize co-winner in chemistry for his work on green fluorescent protein.

"The most common method right now monitors the movement of calcium ions into the cell," said Miller. "It provides some broad indication, but it's an indirect measurement that misses activity we see when directly measuring voltage changes."

The new method employs dyes that penetrate only the membrane of neurons, either in in vitro cells cultured with the dye or, for this study, taken up by neurons in a living leech model. When the dyed cells are exposed to light, neuronal firing causes the dye momentarily to glow more brightly, a flash that can be captured with a high-speed camera.

"One of the tradeoffs with using voltage-sensing dyes in the past is that when they were reasonably sensitive to voltage changes, they were slow compared to the actual physiological events," said Miller. "The new dye gives big signals but is much faster and doesn't perturb the neurons. We essentially see no lag time between the optical signal and electrodes (used to double-check neuronal activity)."

The new method provides a wider view of neuronal activity, said Miller. More importantly, it makes it possible for neuroscientists to do accurate, single trial experiments. "Right now, you have to repeat experiments with cells, and then average the results, which is physiologically less relevant and meaningful."

For Tsien, the new dyes address a career-long challenge.

"These results are the first demonstration of a new mechanism to sense membrane voltage, which is particularly satisfying to me because this was the first problem I started working on as a graduate student in 1972, with little success back then," said Tsien. "Later, we devised indirect solutions such as calcium imaging or dyes that gave big but slow responses to voltage. These techniques have been very useful in other areas of biology or in drug screening, but didn't properly solve the original problem. I think we are finally on the right track, four decades later."

Funding for this research came, in part, from the Howard Hughes Medical Institute, the National Institutes of Health, including the National Institute of Neurological Disorders and Stroke and the National Institute of Biomedical Imaging and Bioengineering.

Co-authors are John Y. Lin, Department of Pharmacology, UC San Diego; E. Paxon Frady, Neurosciences Graduate Group, UC San Diego; Paul A. Steinbach, Department of Pharmacology, UC San Diego and Howard Hughes Medical Institute; William B. Kristan, Jr., Division of Biological Sciences, UC San Diego.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>