Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flips, flops and cartwheels

09.09.2009
Scientists discover gecko tail has a mind of its own

Geckos and other lizards have long been known for their incredible ability to shed their tails as a decoy for predators, but little is known about the movements and what controls the tail once it separates from the lizard's body.

Anthony Russell of the University of Calgary and Tim Higham of Clemson University in South Carolina are closer to solving this mystery as outlined in a paper they co-authored published in the journal Biology Letters.

The scientists demonstrate that tails exhibit not only rhythmic but also complex movements, including flips, jumps and lunges, after the tails are shed. Although one previous study has looked at movement of the tail after it is severed, no study up to this point has quantified movement patterns of the tail by examining the relationship between such patterns and muscular activity.

The new findings are significant because Higham and Russell's discoveries indicate that the lizard tail can provide a model for studying the complex functions of the spinal cord and the effects of spinal cord injuries.

"Much is known about the ecological ramifications of tail loss, such as distracting predators, storing energy reserves and establishing social status but little is known about the pattern and control of movement of automized gecko tails," says Russell a biological sciences professor at the U of C. "What we've discovered is that the tail does not simply oscillate in a repetitive fashion, but has an intricate repertoire of varied and highly complex movements, including acrobatic flips up to three centimetres in height."

Higham, a former U of C student and now an assistant professor of biological sciences at Clemson, says more study needs to be done.

"An intriguing, and as yet unanswered, question is what is the source of the stimulus is that initiates complex movements in the shed tails of leopard geckos," says Higham. "The most plausible explanation is that the tail relies on sensory feedback from the environment. Sensors on its surface may tell it to jump, pivot or travel in a certain direction."

The ability of an animal, or part of an animal, to move without the active control of higher centres in the brain is well known, but this generally occurs as a result of traumatic physical injury. Tails of lizards are shed under the animal's own control. Because of this, the behaviour of the shed part has adaptive evolutionary importance and its actions are programmed to assist in the owner's survival. The movements are coordinated by the part of the spinal cord that is housed in the tail. The isolated tail serves as a vehicle for studying the ways that nerves and muscles act together to generate controlled but complex outputs in the absence of the influence of the brain.

"The automized gecko tail may be an excellent model for understanding the spontaneous activity that is sometimes observed following partial or complete spinal cord injury," says Russell.

The new study shows that the signals responsible for movements of the shed tail begin at the very far end of the tail, indicating that there is a control centre located there that is likely overridden by higher centres until the tail is shed, at which point its potential is realized.

The scientists' paper will be published in the journal Biology Letters on Wed., Sept. 9, at 00:01 BST. It can be found online at: http://rsbl.royalsocietypublishing.org/.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>