Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fire Ants Build Waterproof Rafts

28.04.2011
It’s a naturally occurring phenomenon that has puzzled biologists for decades: Place a single fire ant in water and it will struggle. But a group of fire ants will bind together and float effortlessly for days.

Georgia Tech researchers – Nathan Mlot, mechanical engineering graduate student; Craig Tovey, professor of industrial and systems engineering; and David Hu, professor of mechanical engineering – have solved the mystery of how fire ants self-assemble into a waterproof raft.

Using time-lapse photography and mathematical modeling, the Georgia Tech team found that fire ants act collaboratively rather than individually to form a water-repellant, buoyant raft.

A paper describing the research, titled “Fire ants self-assemble into waterproof rafts to survive floods,” was published April 25 in the early edition of the journal Proceedings of the National Academy of Sciences.

“It’s a real thrill unraveling what at first looks like chaos,” Tovey said. “To understand what the individual behaviors are and how they combine in order to achieve the function of the group is the central puzzle one encounters when studying social insects.”

An individual ant’s exoskeleton is moderately hydrophobic. But fire ants enhance their water repellency by linking their bodies together, a process similar to the weaving of a waterproof fabric, researchers said.

By freezing the ants, the Georgia Tech team observed that fire ants construct rafts when placed in water by gripping each other with mandibles, claw and adhesive pads at a force 400 times their body weight.

The result is a viscous and elastic material that is almost like a fluid composed of ant “molecules,” researchers said. The ants spread out from a sphere into a pancake-shaped raft that resisted perturbations and submergence techniques.

To determine how this is possible, Tovey and the team tracked the ants’ travel and measured the raft’s dimensions. They found the ants move using a stereotyped sequence of behavior. The ants walk in straight lines, ricocheting off the edges of the raft and walking again until finally adhering to an edge, Tovey said. The ant raft is water repellent because of cooperative behavior.

The ant raft provides cohesion, buoyancy and water repellency to its passengers. Even more remarkable, it is self-assembled quickly, in less than 100 seconds. It is also self-healing, meaning if one ant is removed from the raft, others move in to fill the void.

“Self-assembly and self-healing are hallmarks of living organisms,” Hu said. “The ant raft demonstrates both these abilities, providing another example that an ant colony behaves like a super organism.”

The research could have application to logistics and operations research and material sciences, specifically the construction of man-made flotation devices. It also could impact the field of robotics, the team said.

“With the ants, we have a group of unintelligent units acting on a few behaviors that allow them to build complex structures and accomplish tasks,” Mlot said. “In autonomous robotics, that’s what is desired—to have robots follow a few simple rules for an end result.”

Liz Klipp | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>