Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the needle in the proteomic haystack

18.06.2010
Researchers at the RIKEN have demonstrated that a technique for tagging and profiling proteins can be used to accurately classify anti-cancer drugs based on the molecules they target. The technique promises to accelerate the process of proteomic profiling and contribute to more effective drug discovery.

Researchers at the RIKEN Advanced Science Institute have demonstrated that a technique for tagging and profiling proteins can be used to accurately classify anti-cancer drugs based on the molecules they target. The technique, developed in collaboration with a researcher at the University of Tsukuba, promises to accelerate the process of proteomic profiling and contribute to more effective drug discovery.

While essential for effective treatment, our understanding of the complex relationship between drugs and their molecular targets is far from complete. Drug efficacy is thus low, and drugs are often accompanied by dangerous side effects. Targeted cancer therapies, which act by interfering with specific molecules contributing to tumor growth, can bring therapeutic benefits to certain patients, yet are not free of these problems. Solving them depends on connecting drugs to their molecular targets, a task complicated by the huge variety of proteins and complexity of drug-target networks.

In recent years, the field of proteomics has produced powerful techniques that simplify this task by accurately identifying proteins and their interactions. The research team used one of these techniques, two-dimensional difference gel electrophoresis (2D-DIGE), to analyze and compare changes of protein expression levels in HeLa cancer cells treated with 19 well-known anti-cancer agents. The method successfully classified compounds of different structures but sharing molecular target(s), while revealing that compounds previously reported to inhibit the same process in fact were clustered into different groups, highlighting differences in underlying interaction mechanisms.

Described in the journal Chemistry and Biology, the findings broaden the scope of proteomic profiling by enabling researchers to characterize specific compounds in terms of how they interact with biomolecules. While refining the drug discovery process, this advance also contributes to minimizing side-effects, potentially supporting the future development of safer and more effective anticancer drugs.

For more information, please contact:

Dr. Hiroyuki Osada
Dr. Makoto Muroi
Chemical Library Validation Team
RIKEN Advanced Science Institute (ASI)
Tel: +81-(0)48-467-4839 / Fax: +81-(0)48-462-4669
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>