Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast lab-on-chip detects effects of poison

05.10.2016

A new lab-on-a-chip system, developed by the University of Twente in The Netherlands, is capable of fast analysis of the effects of toxic substances on hemoglobin, for example. It mimicks human metabolism.

The effect that toxic substances have on, for example, hemoglobin in blood, can now be tested in a fast way using a new lab-on-a-chip. University of Twente scientist Floris van den Brink developed a fast and efficient mixer for this.


The full reactor and mixing unit on a chip

Substances foreign to the human body – toxic substances, or medication, for example – can have such a short lifetime that the effect is hard to examine. Sometimes the damage already has been done. For example: what happens if PAH’s, polycyclic aromatic hydrocarbons interact with hemoglobin in blood?

PAH’s are released at asphalt road works or coal power plants, for example. Using his new lab-on-a-chip system, Floris van den Brink is able to examine this fast interaction, just like in the human body.

Our body, especially the liver, converts these foreign substances into metabolites. The chip does this as well: a tiny electrochemical reactor produces PAH metabolites like hydroxypyrene. The next step is mixing these metabolites with hemoglobine, to see in what way the toxic and highly reactive metabolite binds to hemoglobin. Using a new mixing technique, this can be done very fast: well within a second.

Using the same micro laboratory, possible remedies can be examined as well, for detoxing the blood. In this way, the chip can also be used for measuring the effects of medication without the need of using laboratory animals.

Rapid mixing

Mixing of fluids on a micro or nano scale is not trivial: they behave differently in the tiny fluid channels, and mechanical stirring is not an option. Van den Brink therefore designed two circular mixing chambers, consisting of tiny channels that have a gradient. One substance enters above, the other below. Using the angle difference, mixing can be accelerated substantially. The entire mixer is no bigger than 0.1 square millimeter. Using mass spectrometry, the output is analysed. The reactor is also special: using diamond electrodes in stead of platinum ones, the yield is improved.

Proteomics

Measuring the effect of hydroxypyrene metabolites on hemoglobine is just one example of the possible applications of the new chip. The system is suitable for analysing numerous types of interactions with proteins, possibly DNA as well. As proteomics is gaining importance in the development of medicine, the chip is a fast and powerful tool.

Van den Brink did his research in the BIOS Lab-on-a-Chip group, part of University of Twente’s MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine. He collaborated with colleagues of the University of Münster, Germany.

http://www.utwente.nl/en

For further information, please contact:

Wiebe van der Veen

+31612185692

w.r.vanderveen@utwente.nl

Wiebe van der Veen | AlphaGalileo

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>