Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exhausted T cells

20.12.2016

LJI researchers map genome-wide changes that drive T cell maturation and exhaustion

In a bid to better understand the gene expression patterns that control T cell activity, researchers at the La Jolla Institute for Allergy and Immunology mapped genome-wide changes in chromatin accessibility as T cells respond to acute and chronic virus infections. Their findings, published in the Dec. 20, 2016 issue of Immunity, shed light on the molecular mechanisms that determine the fate of T lymphocytes and open new approaches to clinical intervention strategies to modulate T cell activity and improve immune function.


T cells (shown in gray) attacking cancer cells.

Credit: La Jolla Institute for Allergy and Immunology

"Identifying the different factors that determine different T cell states and therefore their function helps us understand if T cells will be able or not to fight viral infections or tumor growth, and if they will be able or not to provide long-term protection," says the study's first author James Scott-Browne, a postdoctoral fellow in the laboratory of Anjana Rao, a professor in the Division of Signaling and Gene Expression. "We may be able to revert the exhaustion phenotype of T cells and render them better able to fight tumors or chronic viral infections such as HIV, or generate better memory cells in response to vaccines."

When viruses invade or cells turn malignant, the immune system mobilizes a small cohort of naïve or immature CD8 T cells, a crucial subdivision of the immune system charged with killing virus-infected and cancerous cells. Upon activation, they mature and proliferate exponentially into highly specific effector T cells that eliminate virus-infected or otherwise compromised cells. After their job is done, most effector T cells die leaving behind only a small contingent of memory T cell that confer long-term protection.

In the face of chronic viral infections such as hepatitis and HIV as well as certain types of cancers, however, activated CD8 T cells are unable to gain the upper hand and clear the threat. As a result, CD8 T cells start to express inhibitory cell surface receptors that transmit inhibitory signals into the cell establishing a negative feedback loop. The mechanism is designed to prevent excessive immune responses from taking hold but it leaves CD8 T cells unable to fight foreign invaders effectively and forces them into a state known as "T cell exhaustion."

In earlier work, Rao and her team had pinpointed a transcription factor known as NFAT as the molecular linchpin that orchestrates T cell activation and exhaustion. When the T cell receptor on the surface of CD8 T cells recognizes a foreign protein, it kicks off a signaling cascade that culminates in the activation of NFAT and its partner AP-1.

Together, the pair binds to regulatory regions in the genome and initiates a genetic program that activates T cells and readies them to fight cancer and viral infections. When acting on its own, NFAT shifts the equilibrium from an activated to an exhausted state by binding to a different subset of regulatory regions within the genome, impairing the immune system's response to tumors and infection.

The current study expands the previous experiments, which were largely based on lab-grown T cells, to T cells isolated from mice with acute or chronic viral infections. It centered on a powerful methodology known as ATAC-seq, which pinpoints "open" or accessible stretches of chromatin. Chromatin is the sum total of genomic DNA and all associated proteins, which not only packages and condenses DNA but also helps control gene expression by giving or denying access to transcription factors. Knowing which regulatory sites in the genome are open for business allows scientists to conclude which transcription factors play a role in certain biological processes.

"We showed that when naïve cells are transformed into effector cells, there are big changes in the regions of chromatin near the genes that determine an "activated fate", explains co-lead author Renata Pereira, formerly a postdoctoral researcher in the Rao laboratory, and now an assistant professor at the Universidade Federal do Rio de Janeiro in Brazil. "In contrast the chromatin structure of effector cells is quite similar to that in memory or exhausted cells, suggesting that the differences in the functions of these cell types depend mostly on the action of transcription factors that bind the already open chromatin regions. So transcription factors could be a more interesting target to modulate the function of T cells than proteins that modulate if the chromatin is more or less accessible."

The work was funded by the National Institutes of Health (R01 AI40127) (to A.R.). the Damon Runyon Cancer Research Foundation, and the Pew Latin American Fellows Program in the Biomedical Sciences.

###

Full citation: " Genome-wide changes in chromation accessibility in CD8 T cells during viral infection." James P. Scott-Browne, Isaac F. López-Moyado, Sara Trifari, Victor Wong, Lukas Chavez, Anjana Rao, and Renata M Pereira. Immunity, 2016.

DOI: 10.1016/j.immuni.2016.10.028

URL: http://www.cell.com/immunity/fulltext/S1074-7613(16)30439-3.

About La Jolla Institute for Allergy and Immunology

The La Jolla Institute for Allergy and Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading toward its goal: life without disease.

Media Contact

Jessica Roi
jroi@lji.org
858-752-6645

 @liairesearch

http://www.liai.org 

Jessica Roi | EurekAlert!

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>