Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why evolutionarily ancient brain areas are important: RUB researchers study eye reflex

30.11.2011
Different brain structures control eye reflexes in the course of life / RUB scientists report in the Journal of Neuroscience

Structures in the midbrain that developed early in evolution can be responsible for functions in newborns which in adults are taken over by the cerebral cortex. New evidence for this theory has been found in the visual system of monkeys by a team of researchers from the RUB.

The scientists studied a reflex that stabilizes the image of a moving scene on the retina to prevent blur, the so-termed optokinetic nystagmus. They found that nuclei in the midbrain initially control this reflex and that signals from the cerebral cortex (neocortex) are only added later on. PD Dr. Claudia Distler-Hoffmann from the Department of General Zoology and Neurobiology and Prof. Dr. Klaus-Peter Hoffmann from the Department of Animal Physiology report in the Journal of Neuroscience.

Why the neocortex needs help

To control sensorimotor functions (e.g. eye movements), the adult brain is equipped with different areas in the neocortex, the evolutionarily youngest part of the cerebrum. “This raises the question, why older subcortical structures in the brain have not lost the functions that can also be controlled by the neocortex” says Hoffmann. The neocortex of primates is, however, not fully functional shortly after birth and therefore cannot control the optokinetic nystagmus. “This is most probably also the case with people” says Distler-Hoffmann. Nevertheless, this reflex works directly after birth.

First the brain stem, then the cerebral cortex

The researchers examined what information controls the optokinetic nystagmus in the first weeks after birth. During the first two weeks, the reflex is controlled by signals from the retina, which are transmitted to two nuclei in the midbrain. The neocortex then adds its information and takes over during the first months of life. The optokinetic reflex, which was studied by the researchers also at the behavioural level, is almost identical under the control of the midbrain and the neocortex. It occurs, for example, when watching a moving scene. First the eyes follow the passing scene, then they move quickly in the opposite direction back to their original position. On this reflex, monkeys and humans build their slow eye tracking movements with which they keep “an eye” on moving objects.

Detecting maldevelopments in the visual system at an early stage

The optokinetic nystagmus changes if the visual system does not develop normally. Lens aberrations, corneal opacity and strabismus affect the reflex. “These findings from research with primates are important for recognizing and treating maldevelopments in the visual system of infants and young children at an early stage” explains Distler-Hoffmann.

Bibliographic record

C. Distler, K.-P. Hoffmann (2011): Visual pathway for the optokinetic reflex in infant macaque monkeys, Journal of Neuroscience, doi: 10.1523/JNEUROSCI.4302-11.2011

Further information

PD. Dr. Claudia Distler-Hoffmann, Department of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-24365

claudia.distler@rub.de

Editor
Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>