Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of Metabolic Dependency as Base for Ancestral Symbiosis

26.06.2018

Kiel research team describes the fundamental mechanisms which control the evolutionary ancient symbiotic relationship between algae and cnidarians for the first time

When life on earth developed, symbiotic associations arose as a successful strategy millions of years ago, with which organisms of different species cooperate as a close-knit community, to gain an advantage in the struggle for survival. However, we still largely do not know why they do this, what the real benefits of such partnerships are, and which molecular mechanisms are important.


Microscopic view of Hydra-cells (nuclei appear in green) containing about 20-30 symbiotic Chlorella-algae each (in orange).

© Jay Bathia

Scientists from the Collaborative Research Centre (CRC) 1182 “Origin and Function of Metaorganisms” at Kiel University (CAU), together with Japanese researchers from the Okinawa Institute of Science and Technology (OIST) and Okayama University, have now presented the first comprehensive characterisation of symbiotic interactions, using the example of the cooperation between the freshwater polyp Hydra and the Chlorella algae living inside its cells. Their results have been jointly published in the current issue of the internationally-renowned scientific journal eLife.

In order to investigate the fundamental mechanisms of this symbiosis, the research team focused on the metabolic relationships between Hydra and its algae symbiont. The organisms live in a so-called photosynthetic symbiosis: the algae provide their host with certain metabolic products which they obtain from the conversion of solar energy. In return, they obtain nutrients from the polyps which they cannot acquire by themselves.

“This form of coexistence between cnidarians and algae is an extreme form of symbiosis, in which the algae can no longer survive without their host. The symbiotic algae even give up parts of their own genetic information, and instead use the corresponding structures of the freshwater polyps,” explained Professor Thomas Bosch, cell and developmental biologist at the CAU and spokesperson for the CRC 1182, regarding the extent of the co-dependence between the species. The Hydra are also highly dependent on their symbionts, since the Chlorella colonisation boosts their reproductive success, so the organisms’ viability would be at a considerable disadvantage without the algae.

“Our results also show which specific tools are required at a genetic and molecular level to ensure that a durable and stable symbiosis can develop in the course of evolution,” continued Bosch. On the one hand, laboratory studies revealed that the presence of the symbionts led to significant up-regulation of certain Hydra genes responsible for the metabolism, boosting the nutrient transport between host and symbiont. On the other hand, analysis of the genome of the symbiotic algae revealed that the symbiont is missing the genetic components required to utilise nitrogen, so that the nutrient supply must be partly taken over by the host.

Overall, this new publication answers one of the most important research questions in the first funding phase of the CRC 1182: the driving forces behind the evolution and long-term stability of a symbiosis. The analysis of the interactions between Hydra polyps and algae makes it clear that the co-evolution of organisms can be driven in particular by the possibility of mutual nutrient exchange. The scientists in Kiel, together with their international colleagues, now plan to build on the results of their research and investigate more complex, multi-organismic interaction networks.

A better understanding of the symbiotic relationships between cnidarians and algae is not only valuable in terms of basic scientific knowledge gained, but can also serve as a model for the assessment of climate change, associated with the change of marine ecosystems: corals, for example, are greatly threatened by the impact of global changes since their ability to absorb nutrients is dramatically affected by changes in the nutrient content of sea water.

In turn, the diverse, vibrant, tropical reef-based communities depend on the health and growth of the corals. As corals – like freshwater polyps – are dependent on certain symbiotic bacteria for their nutrient uptake, a more accurate understanding of the underlying mechanisms is required. Further research is necessary to determine whether the new knowledge gained is also applicable to the symbiosis of corals and bacteria, and if this can lead to possible future adaptation strategies for protecting endangered tropical coral reefs.

Original publication:
Mayuko Hamada, Katja Schröder, Jay Bathia, Ulrich Kürn, Sebastian Fraune, Mariia Khalturina, Konstantin Khalturin, Chuya Shinzato, Nori Satoh, Thomas C G Bosch (2018): Metabolic co-dependence drives the evolutionarily ancient Hydra–Chlorella symbiosis eLife
https://dx.doi.org/10.7554/eLife.35122

A photo is available for download under:
https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/207-hydra-...
Caption: Microscopic view of Hydra-cells (nuclei appear in green) containing about 20-30 symbiotic Chlorella-algae each (in orange).
Image: Jay Bathia

Contact:
Prof. Thomas Bosch
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4170
E-mail: tbosch@zoologie.uni-kiel.de

More information:
Priority research area “Kiel Life Science”, Kiel University
http://www.kls.uni-kiel.de

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms", Kiel University:
http://www.metaorganism-research.com

eLife digest, eLife Sciences Publications
https://elifesciences.org/articles/35122#digest

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de , Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

Lab-free infection test could eliminate guesswork for doctors

26.02.2020 | Life Sciences

Scientists develop algorithm for researching evolution of species with WGD

26.02.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>