Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetics alters genes in rheumatoid arthritis

04.07.2012
It's not just our DNA that makes us susceptible to disease and influences its impact and outcome. Scientists are beginning to realize more and more that important changes in genes that are unrelated to changes in the DNA sequence itself – a field of study known as epigenetics – are equally influential.

A research team at the University of California, San Diego – led by Gary S. Firestein, professor in the Division of Rheumatology, Allergy and Immunology at UC San Diego School of Medicine – investigated a mechanism usually implicated in cancer and in fetal development, called DNA methylation, in the progression of rheumatoid arthritis (RA). They found that epigenetic changes due to methylation play a key role in altering genes that could potentially contribute to inflammation and joint damage. Their study is currently published in the online edition of the Annals of the Rheumatic Diseases.


In this artist's rendering, a DNA molecule is methylated on both strands at the center cytosine. DNA methylation plays an important role in epigenetic gene regulation, and is involved in both normal development and in cancer. Credit: UC San Diego School of Medicine

"Genomics has rapidly advanced our understanding of susceptibility and severity of rheumatoid arthritis," said Firestein. "While many genetic associations have been described in this disease, we also know that if one identical twin develops RA that the other twin only has a 12 to 15 percent chance of also getting the disease. This suggests that other factors are at play – epigenetic influences."

DNA methylation is one example of epigenetic change, in which a strand of DNA is modified after it is duplicated by adding a methyl to any cytosine molecule (C) – one of the 4 main bases of DNA. This is one of the methods used to regulate gene expression, and is often abnormal in cancers and plays a role in organ development.

While DNA methylation of individual genes has been explored in autoimmune diseases, this study represents a genome-wide evaluation of the process in fibroblast-like synoviocytes (FLS), isolated from the site of the disease in RA. FLS are cells that interact with the immune cells in RA, an inflammatory disease in the joints that damages cartilage, bone and soft tissues of the joint.

In this study, scientists isolated and evaluated genomic DNA from 28 cell lines. They looked at DNA methylation patterns in RA FLS and compared them with FLS derived from normal individuals or patients with non-inflammatory joint disease. The data showed that the FLS in RA display a DNA methylome signature that distinguishes them from osteoarthritis and normal FLS. These FLS possess differentially methylated (DM) genes that are critical to cell trafficking, inflammation and cell–extracellular matrix interactions.

"We found that hypomethylation of individual genes was associated with increased gene expression and occurred in multiple pathways critical to inflammatory responses," said Firestein, adding that this led to their conclusion: Differentially methylated genes can alter FLS gene expression and contribute to the pathogenesis of RA.

Additional contributors include Kazuhisa Nakano and David L. Boyle, UCSD Department of Medicine; and John W. Whitaker and Wei Wang, UCSD Department of Chemistry and Biochemistry.

This project was supported by grant number UL1RR031980 from the National Institutes of Health's National Center for Advancing Translational Science.

NexDx, Inc. licensed the technology from UC San Diego and provided informatics support for this study. Gary S. Firestein and Wei Wang are on the Scientific Advisory Board of NexDx, Inc.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>