Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering a better biofuel

11.08.2016

New protein process in E. coli could lead to more efficient options for 'tiniest of factories'

While the bacteria E. coli is often considered a bad bug, researchers commonly use laboratory-adapted E. coli that lacks the features that can make humans sick, but can grow just as fast. That same quality allows it to transform into the tiniest of factories: when its chemical production properties are harnessed, E. coli has the potential to crank out biofuels, pharmaceuticals and other useful products.


Engineers at Washington University have found a new way to boost biofuel production in E. coli bacteria by altering its protein structure.

Credit: Washington University in St. Louis

Now, a team from the School of Engineering & Applied Science at Washington University in St. Louis has developed a way to make the production of certain biofuels in E. coli much more efficient. Fuzhong Zhang, assistant professor in the Department of Energy, Environmental & Chemical Engineering, along with researchers in his lab, have discovered a new method to cut out a major stumbling block to production process.

Their findings were recently published in the journal Metabolic Engineering.

"It's a critical step that we've figured out how to solve this problem," Zhang said.

Branched-chain fatty acids (BCFA) are important precursors to the production of freeze-resistant or improved cold-flow biofuels. However, making it in bacterial hosts is difficult. It's co-produced with different compounds called straight-chain fatty acids (SCFA), which have inferior fuel properties. Past attempts to engineer E. coli that churned out BCFA also made a large amount of SCFA, and made it difficult to isolate the BCFA for future use.

"From the process aspect, common bacteria produce mostly SCFA," Zhang said. "That is really not the best fuel to use. Previously, the best you could do was a 20 percent BCFA concentration. Then you needed to use some additional chemical processes to separate the BCFA from the SCFA and enrich it. It consumes so much energy that it's not cost-effective.

"Instead, our approach engineers this organism so it can produce something as close to 100 percent BCFA as possible," he said.

Zhang's lab has previously researched methods to reduce SCFA concentrations in E. coli. This newest paper further improves upon that work. By developing two different protein pathways that chemically affect the bacteria, Zhang's team fixed what it called a bottleneck in the BCFA production line. The protein pathways enabled the E. coli to boost its BCFA manufacture to 80 percent of all fuel products.

"It's a higher quality," said Gayle Bentley, a doctoral student in Zhang's lab, and the paper's lead author. "A lot of people have been making these SCFA fuels, and while that's important work, they don't have the improved qualities like we're generating. The difference is quite significant."

Now that the chemical workaround has been discovered, Zhang and Bentley said the applications for their work have potential to expand to other products derived from fatty acid compounds.

"The compounds we've made as fatty-acid forms are beneficial as a nutraceutical, effective as an anti-tumor compound," Bentley said. "It's also been shown to be effective to prevent and treat neonatal necrotizing enterocolitis. These compounds are really expensive to derive from their original source but using this platform may actually make it more economically feasible."

Said Zhang: "We really think this is an important step toward a platform that can offer a variety of different products for different applications."

Zhang is a past recipient of young faculty awards from the Defense Advanced Research Projects Agency (DARPA); the National Science Foundation; NASA; and the Air Force Office of Scientific Research. He and his lab are working with the Washington University Office of Technology Management (OTM) in regards to patent filing and licensing efforts for the new technology.

###

Both researchers are available for interviews. Zhang may be reached at fzhang29@wustl.edu; Bentley at gbentley@wustl.edu.

Funding for this research was provided by DARPA (D13AP00038).

The School of Engineering & Applied Science focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 90 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Media Contact

Erika Ebsworth-Goold
eebsworth-goold@wustl.edu
314-935-2914

 @WUSTLnews

http://www.wustl.edu 

Erika Ebsworth-Goold | EurekAlert!

Further reports about: DARPA E coli acids bacteria fatty acids necrotizing enterocolitis

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>