Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The end of a dogma: Bipolar cells generate action potentials

13.12.2012
To make information transmission to the brain reliable, the retina first has to “digitize” the image.

Until now, it was widely believed that this step takes place in the retinal ganglion cells, the output neurons of the retina. Scientists in the lab of Thomas Euler at the University of Tübingen, the Werner Reichardt Centre for Integrative Neuroscience and the Bernstein Center Tübingen were now able to show that already bipolar cells can generate “digital” signals.


Image: Tom Baden, 2012

At least three types of mouse BC showed clear evidence of fast and stereotypic action potentials, so called “spikes”. These results show that the retina is by no means as well understood as is commonly believed.

The retina in our eyes is not just a sheet of light sensors that – like a camera chip – faithfully transmits patterns of light to the brain. Rather, it performs complex computations, extracting several features from the visual stimuli, e.g., whether the light intensity at a certain place increases or decreases, in which direction a light source moves or whether there is an edge in the image. To transmit this information reliably across the optic nerve - acting as a kind of a cable - to the brain, the retina reformats it into a succession of stereotypic action potentials – it “digitizes” it.

Classical textbook knowledge holds that this digital code – similar to the one employed by computers – is applied only in the retina’s ganglion cells, which send the information to the brain. Almost all other cells in the retina were believed to employ graded, analogue signals. But the Tübingen scientists could now show that, in mammals, already the bipolar cells, which are situated right after the photoreceptors within the retinal network, are able to work in a “digital mode” as well.

Using a new experimental technique, Tom Baden and colleagues recorded signals in the synaptic terminals of bipolar cells in the mouse retina. Based on the responses of these cells to simple light stimuli, they were able to separate the neurons into eight different response types. These types closely resembled those expected from physiological and anatomical studies. But surprisingly, the responses of the fastest cell types looked quite different than expected: they were fast, stereotypic and occurred in an all-or-nothing instead of a graded fashion. All these are typical features of action potentials.

Such “digital” signals had occasionally been observed in bipolar cells before, but these were believed to be rare exceptional cases. Studies from the past two years on the fish retina had already cast doubt on the long-held belief that BCs do not spike. The new data from Tübingen clearly show that these “digital” signals are systematically generated in certain types of mammalian bipolar cells. Action potentials allow for much faster and temporally more precise signal transmission than graded potentials, thus offering advantages in certain situations. The results from Tübingen call a widely held dogma of neuroscience into question - and open up many new questions.

The Bernstein Center Tübingen is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) supports the new discipline of Computational Neuroscience since 2004 with over 150 Mio. €. The network is named after the German physiologist Julius Bernstein (1835–1917).

Text:
Simone Cardoso de Oliveira, Philipp Behrens
Original Publication:
Baden T., Berens P., Bethge M., Euler T. (2012): „Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina“. Current Biology: Dec 13, 2012.

http://dx.doi.org/10.1016/j.cub.2012.11.006

Contact:

Dr. Tom Baden
Eberhard Karls Universität Tübingen
Werner Reichardt Centre for Integrative Neuroscience (CIN) / Institute for Ophthalmic Research
Otfried-Mueller-Strasse 25
72076 Tuebingen
Phone: +49 (0)7071 29 84749
thomas.baden@uni-tuebingen.de
Prof. Thomas Euler
Eberhard Karls Universität Tübingen
Werner Reichardt Centre for Integrative Neuroscience (CIN) / Institute for Ophthalmic Research
Otfried-Mueller-Strasse 25
72076 Tuebingen
Phone: +49 (0)7071 29 85028
thomas.euler@cin.uni-tuebingen.de
Weitere Informationen:
http://www.eulerlab.de
Website of the Euler Lab
http://www.bccn-tuebingen.de
Bernstein Center Tübingen
http://www.cin.uni-tuebingen.de
Werner Reichardt Centre for Integrative Neuroscience
http://www.uni-tuebingen.de
University of Tübingen
http://www.nncn.de
National Bernstein Network Computational Neuroscience

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.nncn.de/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>