Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Economizing chemistry, atom by atom

06.02.2012
Industrial chemistry is set to improve from novel rare-earth metal catalysts that reduce waste and improve aromatic bond-forming reactions

In chemistry, downsizing can have positive attributes. Reducing the number of steps and reagents in synthetic reactions, for example, enables chemists to boost their productivity while reducing their environmental footprint. This type of ‘atom economy’ could soon improve, thanks to a new rare-earth metal catalyst developed by Zhaomin Hou and colleagues at the RIKEN Advanced Science Institute, Wako1. Their catalyst makes it simpler to modify aromatic carbon–hydrogen (C–H) bonds with silicon-bearing silyl ligands—a reaction step critical to pharmaceutical and materials science manufacturers alike.

Silicon, which is less electronegative than carbon or hydrogen atoms, can significantly alter the electronic characteristics of an organic molecule. Replacing the hydrogen atoms of an aromatic C–H group with silyl groups has emerged as an important strategy in industrial-scale chemical synthesis because these substituents can tune molecular reactivity, enabling construction of elaborate chemical frameworks.

Chemists normally use transition metals such as platinum or rhodium to catalyze aromatic silylation reactions. But to achieve high conversions, these catalysts need to be mixed with additional hydrogen acceptor reagents, which can generate unwanted waste products, including alkanes.

Hou and colleagues have pioneered studies into rare-earth metals, such as scandium, which have different catalytic properties to transition metals. Recently, they found that ‘half-sandwich’ scandium complexes, bonded on one side by a flat organic ring, showed unique activity and selectivity in the presence of carbon double bonds2. This made investigations of unsaturated aromatic molecules a natural next step.

When the researchers mixed a methoxy–benzene compound called anisole with the half-sandwich scandium catalyst and a phenylsilane, they found that the silyl group substituted onto the aromatic ring with excellent selectivity and yields (Fig. 1). Furthermore, the catalyst did not require hydrogen acceptor reagents, and generated only H2 gas as a by-product. Hou notes that this reaction is highly advantageous in terms of atom economy.

X-ray and spectroscopic measurements revealed that the working form of the catalyst, which contained a pair of ‘bridging’ hydrogen atoms, activated the reaction by coordinating the anisole’s methoxy group to the rare-earth metal. According to Hou, this relatively strong interaction directs silylation to occur almost exclusively at the position adjacent to the methoxy unit on the aromatic ring—a ‘regioselectivity’ that outshines that of transition metal catalysts, whose weak oxygen–metal interactions often produce an undesirable mix of silylation isomers.

The team will continue to explore new approaches to improving catalytic sustainability and selectivity by tapping into the extraordinary properties of rare-earth metals.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>