Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drought-exposed leaves adversely affect soil nutrients, study shows

06.04.2011
Chemical changes in tree leaves subjected to warmer, drier conditions that could result from climate change may reduce the availability of soil nutrients, according to a Purdue University study.

Jeff Dukes, an associate professor of forestry and natural resources, found that red maple leaves accumulate about twice as much tannin when exposed to hot, droughtlike conditions. Those tannins, which defend leaves from herbivores and pathogens, were shown to interfere with the function of common enzymes in soil.

"When the leaves are particularly water-stressed by drought or drought with higher temperatures, we see more protective compounds, more tannins and a change in the chemistry of the tannins," said Dukes, whose findings were published in the early online version of the journal New Phytologist. "This suggests that when these leaves fall, they may slow down soil processes such as decomposition and nutrient cycling. This could, in turn, affect plant growth and nutrient uptake."

The findings are the first for the Boston Area Climate Experiment, a National Science Foundation-funded project that Dukes directs. Plants on several field plots are exposed to various future climate scenarios using heaters and other means to control conditions.

"We've basically built a big time machine that moves different plots of land into different possible futures by changing temperatures and precipitation levels," Dukes said.

The increase in leaf tannins observed in this experiment could cause leaves to decompose more slowly and also interfere with critical soil enzymes, leaving fewer nutrients for plants. The tannins in the red maple leaves also were chemically different, making them interact more strongly with the soil enzymes.

Dukes said the tannin issue could effect a sort of tug-of-war in the carbon cycle. With fewer nutrients, plants would take carbon dioxide out of the air more slowly. But if fallen leaves are decomposing slower, then the carbon would be released back to the atmosphere more slowly.

"This is an issue that could affect many natural processes," Dukes said. "We just don't know what the net result will be."

In this experiment, leaves were removed from the experiment plots and tested in laboratories. Dukes said he would next test other plants' leaves exposed to similar conditions to see how their tannins are affected. He also will test his findings in the field to see how an increase in tannins affects soil in a natural setting.

The work was carried out in collaboration Nishanth Tharayil at Clemson University, as well as researchers at Purdue, Clemson University, the University of Massachusetts Boston and Natural Resources Canada.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Jeff Dukes, 765-494-1446, jsdukes@purdue.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>